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1. Introduction

Determining the exact spectrum of free string theory on AdS5×S5 is an important problem

whose solution would surely lead to a better understanding of the AdS/CFT correspon-

dence. The discovery of integrability in the classical theory [5] is a good indication that the

problem may be tractable. More precisely, the authors of [5] found a Lax formulation of the

equations of motion which leads the existence of an infinite tower of conserved charges in the

classical worldsheet theory. These charges have subsequently been exploited to construct
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and classify large families of exact solutions of the classical equations of motion [6 – 8, 1].

However, this does not quite coincide with the standard definition of integrability. In-

tegrability in the standard sense requires not only the existence of a tower of conserved

charges but also requires that these charges be “in involution”. In other words the con-

served charges should Poisson commute with each other. In finite-dimensional systems,

this is a necessary condition for Liouville’s theorem1 to hold. More generally, knowledge of

the Poisson brackets is necessary for constructing the action-angle variables for the system

which play a key role in semiclassical quantisation. In this paper, which builds on our

earlier work [1], we will derive the involution condition for classical strings moving on an

R × S3 submanifold of AdS5 × S5 and construct the corresponding action-angle variables.

In classical string theory on AdS5×S5, as well as many other backgrounds which admit

a Lax formulation, there is a long-standing problem in determining the Poisson brackets

of the conserved charges. As we review below, the problem is due to the presence of Non-

Ultra Local (NUL) terms in the Poisson brackets of the worldsheet fields which lead to

ambiguities in brackets for the charges. In this paper we will present a resolution of this

problem based on earlier work by Maillet [20, 18, 19] in the context of two dimensional

field theory. In particular, Maillet proposed a prescription for regularising the problematic

brackets. In the following we will apply his procedure to the simplest classical subsector of

the AdS5×S5 theory which corresponds to bosonic strings moving on an R×S3 submanifold

of the full geometry. We will show that this prescription leads to a very natural symplectic

structure on the space of finite-gap solutions of the string equations of motion constructed

in [1]. In particular, we find that this symplectic structure leads to canonically normalised

action variables which are exactly equal to the filling fractions discussed in [1]. Our results

are relevant for the leading-order semiclassical quantisation of strings moving on an R×S3

submanifold of AdS5 ×S5. In this context, they confirm the expected integer quantisation

of the filling fractions discussed in [1]. Our methods should generalise to other sectors of

classical strings on AdS5 ×S5 and also to other integrable backgrounds. In the rest of this

introductory section we will outline the main ideas in the paper.

Bosonic strings moving on R × S3 are described in static gauge by an SU(2)-valued

world-sheet field g(σ, τ) which gives rise to a conserved current jµ(σ, τ) = −g−1∂µg. The

corresponding action for g(σ, τ) is essentially that of the SU(2) Principal Chiral model,

S =

√
λ

4π

∫
dσdτ

1

2
tr(jµjµ) (1.1)

where λ is a dimensionless coupling constant. Physical motions of the string also obey the

Virasoro constraint,
1

2
trj2

± = −κ2 (1.2)

where j± = j0 ± j1 are the lightcone components of the current and κ is a constant related

to the spacetime energy of the string. For many purposes it is convenient to complexify

1Liouville’s theorem applies to dynamical systems with N degrees of freedom which also have N , globally

defined, conserved charges in involution. The theorem guarantees that the equations of motion can be solved

by quadratures for arbitrary initial data (see e.g. [9]).
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the model and work with a current jµ taking values in the Lie algebra sl(2, C). A solution

of the original problem where jµ is restricted to lie in su(2) is then obtained by imposing

appropriate reality conditions.

Starting from the action (1.1) it is straightforward to obtain the (equal-τ) Poisson

brackets for the components of the current jµ(σ). Writing the current as j0 = ja
0 ta, j1 =

ja
1 ta, in terms of SU(2) generators ta satisfying,

[ta, tb] = fabctc, tr(tatb) = −δab.

the resulting brackets are,
{

ja
1 (σ), jb

1(σ
′)
}

= 0,
√

λ

4π

{
ja
0 (σ), jb

1(σ
′)
}

= −fabcjc
1(σ)δ(σ − σ′) − δabδ′(σ − σ′),

√
λ

4π

{
ja
0 (σ), jb

0(σ
′)
}

= −fabcjc
0(σ)δ(σ − σ′).

(1.3)

These brackets are usually described as Non-Ultra Local (NUL) reflecting the presence

the the derivative δ′(σ−σ′) in the second bracket. As we now review, the problems related

to the NUL nature of these brackets emerge when we consider the corresponding Poisson

brackets of the infinite tower of conserved charges of the model. The starting point for

constructing these charges is the existence of a one-parameter family of flat currents,

J(x) =
1

1 − x2
(j − x ∗ j), (1.4)

labelled by the complex spectral parameter x ∈ C. The flatness of J(x), for all values of

x, is equivalent to the equations of motion which follow from the action (1.1).

Using the current J(x), we can construct a monodromy matrix,

Ω(x, σ, τ) = P←−exp

∫

[γ(σ,τ)]
J(x) ∈ SL(2, C) (1.5)

where γ(σ, τ) is a non-contractible loop on the string worldsheet based at the point (σ, τ).

The flatness of J(x) implies that Ω(x) undergoes isospectral evolution in the world-sheet

coordinates. In other words the eigenvalues of the monodromy matrix are independent of

σ and τ . As Ω(x) takes values in SU(2) when x ∈ R, it is convenient to parametrise the

eigenvalues as,

λ± = exp (±ip(x)) . (1.6)

Here p(x) is a (multi-valued) function of the spectral parameter which is known as the quasi-

momentum. The Taylor coefficients in the expansion of p(x) then generate an infinite tower

of conserved quantities on the worldsheet.

The Poisson bracket for the conserved charges can be deduced from the Poisson bracket

B(x, x′) = {Ω(x)⊗, Ω(x′)} for the monodromy matrix. To calculate B(x, x′), we begin by

defining a transition matrix between distinct points σ1 and σ2 on the string,

T (σ1, σ2, x) = P←−exp

∫ σ1

σ2

dσJ1(σ, x).

– 3 –
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Using the Poisson brackets (1.3) of the current we can calculate the bracket,

∆(1)(σ1, σ2, σ
′
1, σ

′
2;x, x′) = {T (σ1, σ2, x)⊗, T (σ′

1, σ
′
2, x

′)}

This is well defined when the points σ1, σ2, σ
′
1, σ

′
2 are all distinct. However the presence

of the distribution δ′(σ − σ′) on the r.h.s. of the second bracket in (1.3) leads to a finite

discontinuity on surfaces where two of the points coincide. To obtain the desired bracket

B(x, x′) we must take the limit σ1 → σ′
1, σ2 → σ′

2 and the discontinuity of ∆(1) on this

surface leads to an ambiguous result.

The ambiguity described above is quite mild for the bracket B(x, x′) itself, but becomes

more serious when one tries to define nested Poisson brackets for a product of monodromy

matrices. The ambiguities then result from multiple coincident endpoints of the corre-

sponding transition matrices. To resolve the ambiguity one can introduce an infinitesimal

splitting between these coincident endpoints. Fortunately there is a straightforward pre-

scription due to Maillet which seems to provide the unique consistent resolution of the

problem. As we review in section 2.4.2, Maillet’s prescription involves a total symmetri-

sation over all possible point-splittings. The prescription preserves the defining properties

of the Poisson bracket such as its anti-symmetry, the Leibniz rule and the Jacobi identity.

The resulting bracket of two monodromy matrices can be then be written as,

{
Ω(x)⊗, Ω(x′)

}
=[r(x, x′),Ω(x) ⊗ Ω(x′)]

+ (Ω(x) ⊗ 1) s(x, x′)
(
1⊗ Ω(x′)

)

−
(
1⊗ Ω(x′)

)
s(x, x′) (Ω(x) ⊗ 1) , (1.7)

where,

r(x, x′) = − 2π√
λ

x2 + x′2 − 2x2x′2

(x − x′)(1 − x2)(1 − x′2)
, s(x, x′) = − 2π√

λ

x + x′

(1 − x2)(1 − x′2)
. (1.8)

Finally, using this relation one may compute the bracket,

{
tr Ω(x)n, tr Ω(x′)m

}
= 0. (1.9)

As above the eigenvalues of Ω(x) yield a one-parameter family of conserved charges. The

bracket (1.9) therefore implies that the charges corresponding to different values of the

spectral parameter x Poisson commute. This is the natural generalisation of the involution

condition discussed above for an infinite dimensional system.

The main goal of this paper is to explore the consequence of Maillet’s prescription for

the finite-gap solutions of the string equations of motion discussed in [1]. Solutions carry

the conserved charges QL and QR associated with the SU(2)L × SU(2)R isometry group of

the target S3. As in [1] we will focus on solutions of highest weight with respect to both

SU(2) factors which have,

QR =
1

2i
Rσ3, QL =

1

2i
Lσ3

where σ3 = diag(1,−1) is the third Pauli matrix. The required solutions are characterised

by the analytic behaviour of the corresponding quasi-momentum p(x) in the spectral plane.
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AI BI

CI

∞+

∞−

p(x)

−p(x)

Figure 1: The cycle AI and path BI for the cut CI .

The definition (1.6) implies that p(x) need not be single-valued, but can have discontinuities

of the form

p(x + ε) + p(x − ε) = 2πnI , x ∈ CI , nI ∈ Z, I = 1, . . . ,K. (1.10)

across square-root branch cuts CI in the x-plane. Finite-gap solutions correspond the case

where K, the number of such cuts, is finite. In this case, the resulting double-cover of

the x plane defines a hyperelliptic Riemann surface Σ of finite genus g = K − 1 known

as the spectral curve. It is convenient to define a basis of one-cycles on Σ as follows. For

I = 1, . . . ,K, the contour AI surrounds the cut CI on the upper sheet while BI runs from

the point at infinity on the upper sheet to the same point on the lower sheet via the cut

CI (see figure 1).

The quasi-momentum p(x) gives rise to a meromorphic differential dp on Σ with peri-

ods, ∫

AI

dp = 0,

∫

BI

dp = 2πnI , nI ∈ Z. (1.11)

The explicit reconstruction of solutions from the holomorphic data {Σ, dp} was de-

scribed in detail in [1] and is also reviewed below in section 3.1. Here we will only summarise

the main features. After taking into account the various constraints on the data, Riemann

surfaces Σ and differentials dp corresponding to physical solutions are parametrised by K

moduli SI defined as,

SI =
1

2πi

√
λ

4π

∫

AI

(
x +

1

x

)
dp (1.12)

for I = 1, . . . ,K. For real solutions, the moduli are real numbers corresponding to the

independent conserved charges of the model carried by the configuration. They are further

constrained by the relations,

K∑

I=1

SI =
1

2
(L − R),

K∑

I=1

nISI = 0. (1.13)

The first equality suggests that we should identify SI as the amount of angular momentum

J2 = (L−R)/2 associated with each cut CI . In the context of the AdS/CFT correspondence

– 5 –
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these variables correspond to the filling fractions which count the total number of Bethe

roots associated with each cut. The second equation in (1.13) corresponds to the constraint

that the total worldsheet momentum should vanish.

The moduli SI correspond to the conserved quantities of the corresponding string mo-

tion or the ‘action’ variables. On general grounds, we expect that each conserved quantity

has a corresponding conjugate variable which is periodic and evolves linearly in time. The

extra information required to uniquely specify a solution is just the initial values of these

‘angle’ variables. In [1], we identified this data with a divisor γ of degree g on Σ and an

additional angular variable θ̄ describing the global orientation of the string. Here we will

use an equivalent description in terms of a divisor γ̂ of degree K = g + 1 on Σ. This in

turn uniquely specifies a point ~A(γ̂) in the generalised Jacobian J(Σ,∞±) (topologically

equivalent to J(Σ)×C
∗) via the extended Abel map. The σ and τ -evolution of the solution

correspond to the linear motion of this point. Finally to obtain a real solution, the point
~A(γ̂) is constrained to lie on the real slice,2

TK ' Re [J(Σ) × C
∗] .

We define a set of coordinates ~ϕ = (ϕ1, . . . , ϕK) on the real torus TK normalised so that

ϕI ∈ [0, 2π] for I = 1, . . . ,K. As these variables evolve linearly in the worldsheet time they

correspond to the normalised angle variables of the solution.

The space of finite-gap solutions is a real manifold of dimension 2K parametrised by

the coordinates {SI , ϕI}K
I=1, introduced above. The symplectic structure on the infinite

dimensional field space of the string defined by the regularised Poisson brackets (1.7) in-

duces a symplectic structure on this manifold. Our main result is an explicit formula for

the corresponding symplectic form ω̂2K ;

ω̂2K =
K∑

I=1

δSI ∧ δϕI . (1.14)

As the angular variables ϕI each have period 2π variables, the canonically conjugate

variables SI are the correctly normalised action variables for the problem. The Bohr-

Sommerfeld condition for leading-order semiclassical quantisation of the finite-gap solutions

therefore simply imposes the integrality of the filling fractions.

The rest of the paper is organised as follows. In section 2, we describe the Hamiltonian

formulation of classical string theory on R × S3. In particular we derive the Poisson

brackets (1.3) and discuss the Maillet regularisation prescription leading to the involution

condition (1.9). In section 3, we use the regularised brackets to obtain the symplectic

form (1.14) on the space of finite-gap solutions. Along the way, in subsection 3.1 we

provide a review of the construction of finite-gap solutions given in [1]. This subsection

also contains a new explicit formula for the original σ-model fields corresponding to a

genus g finite-gap solution. Throughout this section we emphasise the parallels between

finite-gap solutions and the conventional mode expansion for strings in flat space. The

2See section 3.1.4 and 3.4.2 for a more precise discussion of the reality conditions.
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remainder of section 3 describes the pullback of the symplectic form to the moduli space of

finite-gap solutions and the corresponding action-angle variables. Some of the more lengthy

calculations are relegated to three appendices.

2. Classical integrability of strings on R × S3

2.1 Strings on R × S3

The embedding of the string in R × S3 is described by the time coordinate X0(σ, τ) ∈ R

along with a matrix

g(σ, τ) =

(
X1 + iX2 X3 + iX4

−X3 + iX4 X1 − iX2

)
≡

(
Z1 Z2

−Z̄2 Z̄1

)
∈ SU(2) (2.1)

describing the embedding in S3. In conformal gauge the action can be written in terms of

a current j = −g−1dg and the time coordinate X0 as follows

S = −
√

λ

4π

∫ [
1

2
tr(j ∧ ∗j) + dX0 ∧ ∗dX0

]
. (2.2)

The equations of motion that follow from this action are

d ∗ j = 0, dj − j ∧ j ≡ 0, d ∗ dX0 = 0, (2.3)

where the second equation is an identity following from the definition of j. To describe

physical motions of the string, the equations of motion (2.3) have to be supplemented by

the Virasoro constraints which in conformal gauge read

1

2
trj2

± = −(∂±X0)
2. (2.4)

where j± = j0 ± j1 are the components of the current j in the worldsheet light-cone

coordinates σ± = 1
2(τ ± σ) = 1

2(σ0 ± σ1). The equation of motion for X0 in (2.3) is

decoupled from the other fields and hence can be solved separately. In analogy with the

flat space case we can then make use of the residual gauge symmetry to impose say static

gauge, X0 = κτ , which fixes the τ coordinate and leaves only the possibility of rigid

translations in the σ coordinate

σ → σ + const. (2.5)

Thus, working in conformal static gauge, the original gauge invariance of the full string

action is completely fixed except for the global transformation (2.5) under which physical

states must be invariant. The conserved charges associated with rigid translations of the

worldsheet coordinate σ and τ are P and E −
√

λκ2/2 where

P = −
√

λ

4π

∫ 2π

0
dσ tr [j0j1] , E = −

√
λ

4π

∫ 2π

0
dσ

1

2
tr

[
j2
0 + j2

1

]
. (2.6)

In static gauge, since X0 is completely specified, only the equations of motion for the

current j in (2.3) remain and the Virasoro constraint simplify to

1

2
trj2

± = −κ2. (2.7)
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It will be convenient to postpone implementing the momentum constraint P = 0 until the

very end of the calculation. Hence we split the constraints (2.7) into two parts. The first

set of constraints read,
1

2
trj2

± = −κ2
±, (2.8)

where κ± are constants. The world-sheet momentum and energy (2.6) then become

P =

√
λ

4
(κ2

+ − κ2
−), E =

√
λ

4
(κ2

+ + κ2
−). (2.9)

The remaining content of the Virasoro constraint (2.7) is the vanishing of the total mo-

mentum P = 0 which implies κ2
+ = κ2

− = κ2 and the string mass-shell condition,

E =

√
λ

2
κ2 =

∆2

2
√

λ
. (2.10)

The action (2.2) has the following global SU(2)L × SU(2)R symmetry

g → ULgUR, UL, UR ∈ SU(2),

with corresponding Noether charges

SU(2)R : QR =

√
λ

4π

∫

γ

∗j, SU(2)L : QL =

√
λ

4π

∫

γ

∗
(
gjg−1

)
,

where γ is any closed curve winding once around the world-sheet. Since these charges are

conserved classically, without loss of generality we can restrict attention to ‘highest weight’

solutions defined by the level set

QR =
1

2i
Rσ3, QL =

1

2i
Lσ3, R, L ∈ R+. (2.11)

Any other solution with Casimirs Q2
R = R2, Q2

L = L2 can be obtained from a ‘highest

weight’ solution by applying to it a combination of SU(2)R and SU(2)L transformations.

Note that the current j is SU(2)L invariant, but transforms under SU(2)R by conjugation

j → U−1
R jUR.

2.2 Hamiltonian framework

Starting from the action (2.2) we first derive the Poisson brackets of the system. It will

be convenient to choose as our generalised coordinates, the (target-space) time coordinate

q0(σ) = X0(σ) and the spatial component of the SU(2)R current, qa(σ) = ja
1 (σ) for a =

1, 2, 3. To proceed further we first choose a particular basis ta of the Lie algebra su(2) with

structure constants fabc and normalised such that

[ta, tb] = fabctc, tr(tatb) = −δab.

The action (2.2) then reads

S =

√
λ

4π

∫
d 2σ

[
n∑

a=1

1

2

[
(ja

0 )2 − (ja
1 )2

]
− Ẋ2

0 + X ′2
0

]
.

– 8 –
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Here the dot and prime denote differentiation with respect to the worldsheet coordinates

τ and σ respectively. The conjugate momentum for the time coordinate X0(σ) is given by,

π0(σ) =
δS

δq̇0(σ)
= −

√
λ

2π
Ẋ0(σ).

By the flatness of j it follows that q̇a(σ) =
∂ja

0

∂σ
− [j1, j0]

a = ∇1j
a
0 , where ∇1 is the covariant

derivative (∇ = d − j) for the connection j1 = ja
1 ta. The conjugate momentum of qa(σ) is

then

πa(σ) =
δS

δq̇a(σ)
= −

√
λ

8π

∫ n∑

b=1

δ(jb
0)

2(σ′)

δq̇a(σ)
dσ′dτ ′ = −

√
λ

4π

∫ n∑

b=1

δjb
0(σ

′)

δq̇a(σ)
jb
0(σ

′)dσ′dτ ′

= −
√

λ

4π

∫ n∑

b=1

∇−1
1 (δb

aδ(σ − σ′)δ(τ − τ ′))jb
0(σ

′)dσ′dτ ′ =

√
λ

4π
∇−1

1 ja
0 (σ).

In other words,
√

λ
4π

ja
0 (σ) = ∇1π

a(σ) for a = 1, 2, 3. Introducing a new index A = 0, 1, 2, 3,

the full set of canonical Poisson brackets between the generalised coordinates and their

conjugate momenta are,

{
qA(σ), qB(σ′)

}
=

{
πA(σ), πB(σ′)

}
= 0

{
qA(σ), πB(σ′)

}
= δABδ(σ − σ′).

It is convenient to rewrite these Poisson brackets by eliminating three conjugate momenta

πA for A > 0, in favour of the current components ja
0 to obtain,

{
ja
1 (σ), jb

1(σ
′)
}

= 0, (2.12a)
√

λ

4π

{
ja
0 (σ), jb

1(σ
′)
}

=
{
∇1π

a(σ), qb(σ′)
}

= −
{
qb(σ′), ∂σπa(σ)

}
+ fadc

{
qb(σ′), qd(σ)πc(σ)

}

= −∂σ

(
δabδ(σ′ − σ)

)
+ fadcqd(σ)δbcδ(σ′ − σ)

= −fabcjc
1(σ)δ(σ − σ′) − δabδ′(σ − σ′), (2.12b)√

λ

4π

{
ja
0 (σ), jb

0(σ
′)
}

= −fabcjc
0(σ)δ(σ − σ′). (2.12c)

As expected, the SU(2)R symmetry is generated by the Noether charge QR. Indeed,

we find from the last two equations that the Noether charge QR acts on the SU(2)R current

j as follows

{ε · QR, j} = [j, ε] = δεj, (2.13)

where ε = εata ∈ su(2) is infinitesimal and ε · QR = εaQa
R.
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In the Hamiltonian formalism, the dynamics of the string is encoded in the Virasoro

constraints,

Hτ =
3∑

a=1

[
(ja

0 )2 +
(
jb
1

)2
]
− 4π2

λ

(
π0

)2 − X ′2
0 = 0,

Hσ =
3∑

a=1

(ja
0 ja

1 ) +
2π

λ
π0X

′
0 = 0.

(2.14)

The corresponding Hamiltonian takes the form

H =
1

2π

∫ 2π

0
dσ (NτHτ + NσHσ) ,

where Nτ (σ) and Nσ(σ) are Lagrange multipliers for the Virasoro constraints.

As in section 2.1 we will choose to work in static gauge. This corresponds to setting

X0 = κτ and π0 = −
√

λκ/2π where, as before, κ is related to the string energy as κ =

∆/
√

λ. In this gauge, rigid translations of the world-sheet coordinates τ and σ are generated

by the Hamiltonian functions,

Hstatic
τ =

1

2π

∫ 2π

0
dσ

3∑

a=1

[
(ja

0 )2 +
(
jb
1

)2
]

,

Hstatic
σ =

1

2π

∫ 2π

0
dσ 2

3∑

a=1

(ja
0 ja

1 ) .

The zero momentum components of the Virasoro constraints correspond to the string mass-

shell condition Hstatic
τ = ∆2/

√
λ and the condition that the total world-sheet momentum

should vanish: Hstatic
σ = 0.

Even though the Virasoro constraints are first class by themselves, the static gauge

fixing conditions X0 = κτ and π0 = −
√

λκ/2π are second class since {X0(σ
′), π(σ)} =

δ(σ−σ′) 6= 0. This means that to impose all the constraints in the Hamiltonian framework

one must work with Dirac brackets instead of Poisson brackets.3 However, as we argue

in appendix D, for the set of action-angle variables which we are concerned with in this

paper the Dirac brackets are the same as their Poisson brackets since these variables can

be defined in a conformally invariant way.

In the following it will be convenient to think of the infinite-dimensional phase space

of the model, denoted P∞ as consisting of all configurations j0(σ), j1(σ) ∈ su(2) which

obey the Virasoro constraints (2.7). Sometimes we will also consider the complexified

phase-space P∞
C

with j0(σ), j1(σ) ∈ sl(2, C).

2.3 Conserved charges

The starting point for constructing the infinite tower of conserved charges for the system

is to rewrite its equations of motion (2.3) as the flatness condition

dJ(x) − J(x) ∧ J(x) = 0, (2.15)

3We are very grateful to Marc Magro for pointing out this issue.
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for some family of current J(x) on the world-sheet defined in this case as

J(x) =
1

1 − x2
(j − x ∗ j) .

Owing to the flatness of the current J(x), a natural object to consider is the parallel

transporter on the world-sheet with J(x) as connection, and in particular the monodromy

matrix defined as the parallel transporter around a curve cσ,τ bound at (σ, τ) and winding

once around the world-sheet

Ω(x, σ, τ) = P←−exp

∫

[cσ,τ ]
J(x),

which only depends on the homotopy class [cσ,τ ] of the curve cσ,τ with both end-points fixed

at (σ, τ). An immediate property of Ω(x, σ, τ) is that its (σ, τ)-evolution is isospectral, i.e.

Ω(x, σ′, τ ′) = UΩ(x, σ, τ)U−1, where U = P←−exp

∫ (σ′,τ ′)

(σ,τ)
J(x). (2.16)

This leads straight away to a way of generating infinitely many conserved charges from

traces of powers of monodromy matrices since

∂σtr Ω(x)n = ∂τ tr Ω(x)n = 0.

2.4 Involution of conserved charges

The statement of the involution property of the conserved charges generated by tr Ω(x)n

is equivalent to the statement
{
tr Ω(x)n, tr Ω(x′)m

}
= 0, ∀n,m ∈ N.

In order to show this we must first obtain the Poisson bracket algebra of monodromy ma-

trices {Ω(x)⊗,Ω(x′)}, which is the main focus of this subsection and appendix A. However,

as we review below, since the original Poisson brackets (2.12b) of the current contain a non-

ultralocal term, the resulting brackets of monodromy matrices are ambiguous and require

regularisation.

2.4.1 Algebra of Lax connections

The space component of the Lax connection J(x, σ, τ) defined in section 2.3 is given by

J1(σ, x) =
1

1 − x2
(j1(σ) + xj0(σ)).

The monodromy matrix being the path ordered exponential of the space component J1,

we will need the Poisson bracket {J1, J1} in order to construct the Poisson bracket of

monodromy matrices. So consider,
√

λ

4π

{
Ja

1 (σ, x), Jb
1(σ′, x′)

}
= −

√
λ

4π

1

(1 − x2)(1 − x′2)

{
ja
1 (σ) + xja

0 (σ), jb
1(σ

′) + x′jb
0(σ

′)
}

=− 1

(1−x2)(1−x′2)

[
(x+x′)

(
fabcjc

1(σ)δ(σ−σ′)+δabδ′(σ−σ′)
)
+xx′fabcjc

0(σ)δ(σ−σ′)
]

=− x+x′

(1−x2)(1−x′2)
δabδ′(σ−σ′)− 1

x−x′

[
x2

1−x2
Jc

1(σ, x′)− x′2

1−x′2 Jc
1(σ, x)

]
fabcδ(σ−σ′).
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Now we switch to tensor notation by contracting both sides with ta⊗tb and using [η, tc⊗1] =

−fabcta ⊗ tb, [η,1 ⊗ tc] = fabcta ⊗ tb, where η := −ta ⊗ ta, so that

√
λ

4π

{
J1(σ, x)⊗, J1(σ

′, x′)
}

=

[
− η

x−x′ ,
x′2

1−x′2 J1(σ, x) ⊗ 1 +
x2

1−x2
1⊗ J1(σ, x′)

]
δ(σ−σ′)

+
x + x′

(1 − x2)(1 − x′2)
ηδ′(σ − σ′).

This bracket has the general form of the fundamental Poisson bracket {J1, J1} for a non-

ultralocal integrable system formulated by Maillet [20, 21]

{
J1(σ, x)⊗, J1(σ

′, x′)
}

= r′(σ, x, x′)δ(σ − σ′)

+
[
r(σ, x, x′), J1(σ, x) ⊗ 1 + 1⊗ J1(σ

′, x′)
]
δ(σ − σ′)

−
[
s(σ, x, x′), J1(σ, x) ⊗ 1 − 1⊗ J1(σ

′, x′)
]
δ(σ − σ′)

−
(
s(σ, x, x′) + s(σ′, x, x′)

)
δ′(σ − σ′), (2.17)

where in our case s(x, x′) = − 2π√
λ

x+x′

(1−x2)(1−x′2)
η is constant (independent of σ and τ), and

we find that r is constant as well and given by

r(x, x′) = − 2π√
λ

x2 + x′2 − 2x2x′2

(x − x′)(1 − x2)(1 − x′2)
η. (2.18)

The principal chiral model was first described in terms of Maillet’s (r−s)-matrix formalism

in [19].

2.4.2 Algebra of monodromy matrices: Maillet regularisation

A first step towards obtaining the algebra of monodromy matrices is to consider first the

algebra of transition matrices. A transition matrix is defined relative to an interval [σ1, σ2]

as follows

T (σ1, σ2, x) = P←−exp

∫ σ1

σ2

dσJ1(σ, x).

The monodromy matrix is then simply a special transition matrix whose interval wraps

the circle fully once, i.e.

Ω(x, σ) = T (σ, σ + 2π, x).

Since the derivation of the algebra of transition matrices is fairly standard [2] we have

left it to appendix A to avoid cluttering this section with algebra. The end result is the

following bracket between two transition matrices with distinct intervals,

{
T (σ1, σ2, x)⊗, T (σ′

1, σ
′
2, x

′)
}

= +ε(σ′
1 − σ′

2)χ(σ;σ′
1, σ

′
2) × T (σ1, σ, x) ⊗ T (σ′

1, σ, x′)

×
(
r(σ, x, x′) − s(σ, x, x′)

)
T (σ, σ2, x) ⊗ T (σ, σ′

2, x
′)
∣∣σ=σ1

σ=σ2

+ε(σ1 − σ2)χ(σ;σ1, σ2) × T (σ1, σ, x) ⊗ T (σ′
1, σ, x′)

×
(
r(σ, x, x′) + s(σ, x, x′)

)
T (σ, σ2, x) ⊗ T (σ, σ′

2, x
′)
∣∣σ=σ′

1

σ=σ′
2

.
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It follows from this algebra that the function,

∆(1)(σ1, σ2, σ
′
1, σ

′
2;x, x′) = {T (σ1, σ2, x)⊗, T (σ′

1, σ
′
2, x

′)}

is well defined and continuous where σ1, σ2, σ
′
1, σ

′
2 are all distinct, but it has disconti-

nuities proportional to 2s precisely across the hyperplanes corresponding to some of the

σ1, σ2, σ
′
1, σ

′
2 being equal. Defining the Poisson bracket {T ⊗, T} for coinciding intervals

(σ1 = σ′
1, σ2 = σ′

2) or adjacent intervals (σ′
1 = σ2 or σ1 = σ′

2) requires defining the value of

the discontinuous matrix-valued function ∆(1) at its discontinuities. It is shown in [20] that

requiring antisymmetry of the Poisson bracket and the derivation rule to hold imposes the

symmetric definition of ∆(1) at its discontinuous points; for example at σ1 = σ′
1 we must

define

∆(1)(σ1, σ2, σ1, σ
′
2;x, x′) =

lim
ε→0+

1

2

(
∆(1)(σ1, σ2, σ1 + ε, σ′

2;x, x′) + ∆(1)(σ1, σ2, σ1 − ε, σ′
2;x, x′)

)
,

and likewise for all other possible coinciding endpoints. This definition is equivalent to

assigning the value of 1
2 to the characteristic function χ at its discontinuities. Having thus

defined ∆(1) at its discontinuities we now have a definition of the Poisson bracket {T ⊗, T} for

coinciding and adjacent intervals consistent with the antisymmetry of the Poisson bracket

and the derivation rule. However this definition of the {T ⊗, T} Poisson bracket does not

satisfy the Jacobi identity as is shown in [20], so that in fact no strong definition of the

bracket {T ⊗, T} with coinciding or adjacent intervals can be given without violating the

Jacobi identity [20]. It is nevertheless possible [20, 18] to give a weak4 definition of this

bracket for coinciding or adjacent intervals in a way that is consistent with the Jacobi

identity as follows: consider the multiple Poisson bracket of (n + 1) transition matrices

∆(n)
(
σ

(1)
1 , σ

(1)
2 , . . . , σ

(n+1)
1 , σ

(n+1)
2 ;x(1), . . . , x(n+1)

)
=

{
T

(
σ

(1)
1 , σ

(1)
2 , x(1)

)
⊗,

{
. . . ⊗,

{
T

(
σ

(n)
1 , σ

(n)
2 , x(n)

)
⊗, T

(
σ

(n+1)
1 , σ

(n+1)
2 , x(n+1)

)}
. . .

}}
,

which is unambiguously defined and continuous where σ
(1)
1 , σ

(1)
2 , . . . , σ

(n+1)
1 , σ

(n+1)
2 are all

distinct, but again is discontinuous across the hyperplanes defined by some of the points

σ
(1)
1 , σ

(1)
2 , . . . , σ

(n+1)
1 , σ

(n+1)
2 being equal. The values of ∆(n) at its discontinuities are defined

by employing a point splitting regularisation followed by a total symmetrisation limit [20].

For example, we define its value at σ
(i)
1 = σ1, i = 1, . . . , n + 1 by

∆(n)
(
σ1, σ

(1)
2 , . . . , σ1, σ

(n+1)
2 ;x(1), . . . , x(n+1)

)
=

lim
ε→0+

1

(n+1)!

∑

p∈Sn+1

∆(n)
(
σ1+p(1)ε, σ

(1)
2 , . . . , σ1+p(n+1)ε, σ

(n+1)
2 ;x(1), . . . , x(n+1)

)
,

4The bracket is weak in the sense that any multiple Poisson bracket of T ’s can be given a meaning which

cannot be reduced to its similarly defined constituent Poisson brackets, i.e. the multiple Poisson bracket

{T ⊗, {. . . {T ⊗, T} . . .}} with n factors of T must be separately defined for each n.
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γ

γ′

S1

γ̃

γ̃′γ̃′

0 2π

R

Figure 2: Example of a path lifting required in computing Poisson brackets of transition matrices

on S1 of the form {T (γ, x)⊗, T (γ′, x′)}.

and similarly one defines the value of ∆(n) at all other discontinuities. With the function

∆(n) being defined at its discontinuities we now have the definition of a weak bracket which

reduces to the normal Poisson bracket on quantities for which the latter is continuous. It

is shown in [20] that the Jacobi identity for transition matrices with coinciding or adjacent

interval is now satisfied in terms of this weak bracket (∆(2) being the relevant quantity in

this case).

Using this regularisation procedure we now derive an expression for the Poisson

bracket between two monodromy matrices in the periodic case under consideration, a

result which was first obtained in [18, 20]. To begin with consider the Poisson bracket

{T (γ, x)⊗, T (γ′, x′)} between two generic transition matrices T (γ, x) and T (γ′, x′) on the

circle S1, defined relative to two different paths γ and γ′ on S1, e.g.

T (γ, x) = P←−exp

∫

γ

dσJ1(σ, x). (2.19)

We would like to compute this bracket by working on the universal cover R of S1. So we

choose a lift γ̃ of the path γ to R. Then because the only contribution to the Poisson

bracket comes from the region of overlap between γ and γ′ on S1 (by (A.4) and (2.19)),

we have that

{T (γ, x)⊗, T (γ′, x′)} =
∑

γ̃′ lift of γ′

{T (γ̃, x)⊗, T (γ̃′, x′)}, (2.20)

where the sum is over lifts γ̃′ of γ′ to R. An example of these lifted paths is shown in

figure 2.

Let us now apply this formula to compute the Poisson bracket between two transition

matrices Ω(x, σ) and Ω(x′, σ) on S1. The common interval γ of both matrices stretches

once around the full circle and so it follows that if we take γ̃ = [σ, σ + 2π] to be the lift of

the interval of Ω(x, σ) then there are only three possibilities for the lift γ̃′ of the interval

of Ω(x′, σ) which give a non-zero contribution to the right hand side of (2.20), namely

[σ − 2π, σ], [σ, σ + 2π], [σ + 2π, σ + 4π]. (2.21)

Since the corresponding three brackets {T (γ̃, x)⊗, T (γ̃′, x′)} on R are over coinciding or

adjacent intervals they need to be regularised by the procedure described above. Let us
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start by considering the coinciding interval bracket {T (σ, σ+2π, x)⊗, T (σ, σ+2π, x′)}. There

are 4 different possible point splittings of the endpoints, each giving the same contribution

(using (A.6))

r(x, x′)
(
Ω(x, σ) ⊗ Ω(x′, σ)

)
−

(
Ω(x, σ) ⊗ Ω(x′, σ)

)
r(x, x′)

in the limit of coinciding points. On the other hand, the adjacent interval brackets (corre-

sponding to the first and last choices for γ̃′ in (2.21)) each have two possible point splittings

and together they contribute, in the coinciding end-point limit,

(Ω(x, σ) ⊗ 1) s(x, x′)
(
1 ⊗ Ω(x′, σ)

)
−

(
1⊗ Ω(x′, σ)

)
s(x, x′) (Ω(x, σ) ⊗ 1)

to the Poisson bracket of two monodromy matrices. The sum of the last two expressions

gives the right hand side of (2.20) which yields the sought-after (weak) Poisson bracket

between two monodromy matrices on S1

{
Ω(x, σ)⊗, Ω(x′, σ)

}
= [r(x, x′),Ω(x, σ) ⊗ Ω(x′, σ)]

+ (Ω(x, σ) ⊗ 1) s(x, x′)
(
1 ⊗ Ω(x′, σ)

)

−
(
1⊗ Ω(x′, σ)

)
s(x, x′) (Ω(x, σ) ⊗ 1) . (2.22)

Consider now the bracket {Ω(x, σ)n ,⊗ Ω(x′, σ)m} for any n,m ∈ N, which can easily be

reduced to the previous Poisson bracket as follows (omitting the σ-dependence)

{
Ω(x)n ⊗, Ω(x′)m

}
= nm

(
Ω(x)n−1 ⊗ 1

) {
Ω(x)⊗, Ω(x′)

} (
1 ⊗ Ω(x)m−1

)
.

Then using the standard notational shorthands
1
A = A⊗ 1 and

2
A = 1⊗A, and taking the

trace over both factors of the tensor product we find

{
tr Ω(x)n, tr Ω(x′)m

}
= nm tr12

(
1
Ω(x)n−1

2
Ω(x′)m−1

{
1
Ω(x),

2
Ω(x′)

})

= nm tr12

[
r(x, x′) + s(x, x′),

1
Ω(x)n

2
Ω(x′)m

]

i.e.
{
tr Ω(x)n, tr Ω(x′)m

}
= 0,

where in the second line we have used (2.22). Because this last bracket is zero it can be

understood as defining a bracket in the strong sense and without recourse to any regular-

isation. We deduce from this last relation that the invariants of the system encoded in

the quantity tr Ω(x)n are in involution with respect to the Poisson bracket; this is the full

statement of Liouville integrability of the system.

As a specific check of (2.22) we show that the SU(2)R symmetry is canonically re-

alised on Ω(x) via the weak Poisson bracket [18]. It is straightforward to show that the

monodromy matrix has the following asymptotics at x = ∞ [1],

Ω(x, σ, τ) = 1 +
1

x

4πQR√
λ

+ O

(
1

x2

)
as x → ∞.
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Then starting with equation (2.22) multiplied by x (ε ⊗ 1) and taking the trace over the

first tensor product space followed by the limits x → ∞ and x′ → 0 one deduces, using

also the asymptotics r(x, x′) ∼x→∞
2π√

λ

1−2x′2

x(1−x′2)
and s(x, x′) ∼x→∞

2π√
λ

1
x(1−x′2)

, that
{
ε · QR,Ω(x′)

}
=

[
ε,Ω(x′)

]
.

In other words, the right Noether charge QR generates the correct transformation on Ω(x),

which we expect to be

Ω(x) → U−1
R Ω(x)UR,

provided we use the weak bracket instead of the Poisson bracket.

3. Symplectic structure for finite-gap solutions

In a previous paper [1] we constructed the general finite-gap solution to the equations

of motion of a string moving on R × S3 satisfying the Virasoro constraints. We also

constructed the corresponding moduli space of solutions. Our aim here is to determine the

symplectic structure induced on the moduli space of solutions by the regularised Poisson

brackets obtained in the previous section. As we will see below, our analysis for strings

moving on R × S3 can be thought of as a non-linear generalisation of the more familiar

Hamiltonian analysis of strings in flat space. We will therefore begin by reviewing the

standard discussion of the flat space case following eg section 2 of [10].

We will consider a closed bosonic string moving on (D + 1)-dimensional Minkowski

space with worldsheet fields Xµ(σ, τ) for µ = 0, 1, . . . ,D. In conformal gauge, the world-

sheet equation of motion is the two-dimensional Laplace equation ∂+∂−Xµ = 0. As the

equation is linear, the general solution for closed string boundary conditions is given by

the Fourier series,

Xµ(σ, τ) = xµ + pµτ + i
∑

n 6=0

1

n
αµ

ne−in(τ−σ) + i
∑

n 6=0

1

n
α̃µ

ne−in(τ+σ). (3.1)

where the Fourier coefficients αµ
n and α̃µ

n correspond to classical oscillator coordinates for

left- and right-moving modes respectively. For our purposes it will be convenient to restrict

our attention to classical solutions with a finite number of oscillators turned on. Generic

solutions can then be obtained as a limiting case. We will see that these ‘finite-oscillator’

solutions are close analogs of the finite-gap solutions of string theory on R × S3 and other

classically integrable backgrounds.

Since (3.1) is the general solution to the field equations, the fields Xµ(σ) = Xµ(σ, 0)

and Pµ(σ) = Ẋµ(σ, 0) restricted to a τ -slice (taken at τ = 0 without loss of generality) give

a convenient parametrisation of the phase space of the string.5 In terms of the oscillator

coordinates we find,

Xµ(σ) = xµ + i
∑

n 6=0

1

n
αµ

neinσ + i
∑

n 6=0

1

n
α̃µ

ne−inσ,

Pµ(σ) = pµ +
∑

n 6=0

αµ
neinσ +

∑

n 6=0

α̃µ
ne−inσ.

(3.2)

5Note that this is not the physical phase space as we have not yet imposed the Virasoro constraints.
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Conversely the oscillator coefficients αµ
n, α̃µ

n as well as the centre of mass position and

momenta xµ, pµ can be extracted from a generic phase-space configuration Xµ(σ), Pµ(σ)

by the following relations





αµ
m =

1

2π

∫ 2π

0
eimσ 1

2
(Pµ(σ) − ∂σXµ(σ)) dσ, m 6= 0

α̃µ
m =

1

2π

∫ 2π

0
eimσ 1

2
(Pµ(σ) + ∂σXµ(σ)) dσ, m 6= 0

xµ =
1

2π

∫ 2π

0
Xµ(σ)dσ, pµ =

1

2π

∫ 2π

0
Pµ(σ)dσ.

(3.3)

Equations (3.3) are the inverse of the equations (3.2) and the transformation

{Xµ(σ), Pµ(σ)} 7→ {xµ, pµ, αµ
n, α̃µ

n} (3.4)

is simply a change of variable on phase-space. The Poisson brackets which follow from the

string action, take the form,

{Xµ(σ),Xν(σ′)} = {Pµ(σ), P ν(σ′)} = 0, (3.5)

{Pµ(σ),Xν(σ′)} = ηµνδ(σ − σ′), (3.6)

and it is straightforward to rewrite these brackets in the new coordinate system as,

{αµ
m, αν

n} = imδm+nηµν , {αµ
m, α̃ν

n} = 0,

{α̃µ
m, α̃ν

n} = imδm+nηµν , {pµ, xν} = ηµν .
(3.7)

So far we have discussed the full solution space of the equations of motion. The

next step is to restrict to physical configurations of the string by imposing the Virasoro

constraints and fixing the residual gauge symmetry. These steps are easily accomplished

by imposing light-cone gauge. We begin by defining light-cone coordinate X± = X0 ±XD

and imposing the gauge condition X+ = p+τ + x+. With this choice, it is possible to solve

the Virasoro constraint explicitly to eliminate the longitudinal oscillator coordinates. The

remaining independent degrees of freedom are,

{xi, pi, x−, p−, αi
n, α̃i

n} (3.8)

where the index i = 1, 2, . . . ,D− 1 runs over the transverse spacetime dimensions. To find

the Poisson brackets of the physical degrees of freedom one must follow the standard Dirac

procedure for constrained systems. In the present case this is described in detail in the

book by Brink and Henneaux [11]. The Virasoro constraint and the light cone gauge fixing

condition together correspond to a system of second order constraints on the phase space.

Fortunately, the resulting Dirac bracket for the transverse degrees of freedom is the same

as their naive Poisson bracket,

{αi
m, αj

n} = imδm+nδij , {αi
m, α̃j

n} = 0,

{α̃i
m, α̃j

n} = imδm+nδij , {pi, xj} = δij .
(3.9)
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These Poisson brackets are the starting point for canonical quantisation of the string which

proceeds by the usual recipe of promoting Poisson brackets to commutators.

Classical string theory in flat space is trivially integrable as the corresponding equation

of motion is linear. For comparison with the non-linear case, it will be convenient to

exhibit integrability explicitly by constructing the corresponding action-angle variables.

As the dynamics of the COM degrees of freedom of the string is free we will focus on the

transverse oscillators which describe the physical excitations of the string in its rest frame.

We introduce a new set of variables {θj
n, Sj

n, θ̃j
n, S̃j

n} for j = 1, . . . ,D − 1 via the relations,

αj
n =

√
nSj

neiθ
j
n , α̃j

n =

√
nS̃j

neiθ̃
j
n .

The variables Sj
n and S̃j

n are classical analogs of the occupation numbers of each trans-

verse oscillator. These variables are trivially time independent and therefore correspond to

conserved charges. One may also check the involution condition,

{Si
n, Sj

m} = {Si
n, S̃j

m} = {S̃i
n, S̃j

m} = 0 (3.10)

These are the action variables of the flat space string.

The angular variables θj
n and θ̃j

n each have period 2π and are canonically conjugate to

the corresponding action variables. Their non-vanishing Poisson brackets are,

{Si
n, θj

m} = {S̃i
n, θ̃j

m} = δnmδij (3.11)

It follows immediately from Hamilton’s equations that the angle variables evolve linearly

in time while, as above, the conjugate action variables remain constant.

θµ
n(τ) = θµ

n(0) − nτ, Sµ
n(τ) = Sµ

n(0) = const.

θ̃µ
n(τ) = θ̃µ

n(0) − nτ, S̃µ
n(τ) = S̃µ

n(0) = const.

We now turn to the case at hand of string on R × S3 and present a non-linear ana-

logue of the above concepts for strings on flat space. However we will proceed in a slightly

different order. As we have already fixed the gauge completely in section 2.1 by impos-

ing static gauge X0 = κτ , we now solve both the equations of motion and the Virasoro

constraint simultaneously through algebro-geometric methods in section 3.1. In this way

we immediately obtain the general ‘finite-gap’ solution (analogue of the ‘finite-oscillator’

solution above) expressed directly in terms of physical degrees of freedom. Section 3.2

aims to derive the analogues of (3.3) in the case of the nonlinear differential equations for

a string on R × S3 which will be crucial in section 3.3 for determining Poisson brackets

on the algebro-geometric data. Finally, in section 3.4 we define the change of variable to

action-angle coordinates and verify the canonical Poisson brackets for these variables.

3.1 Finite-gap integration

In this subsection we will briefly review the explicit construction of finite-gap solutions

given in [1]. The reader should consult this reference for extra details.
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3.1.1 The spectral curve

The starting point for the method of finite-gap integration is the formulation of the equa-

tions of motion (2.3) of the system as the flatness condition (2.15). Representing the

equations of motion in this form introduces a large amount of spurious symmetries which

we are free to fix as we proceed; indeed, equation (2.15) is invariant under gauge transfor-

mations J(x) 7→ g̃J(x)g̃−1 + dg̃g̃−1.

Now the isospectral (σ, τ)-evolution (2.16) of the monodromy matrix leads naturally

to the definition of a (σ, τ)-independent spectral curve in C
2

Γ : Γ(x, y) = det (y1− Ω(x, σ, τ)) = 0.

However, this curve is highly singular [1] and so one should replace it with an algebraic

curve Σ defined as a desingularisation of Γ (for details of this construction see [1, 7]). An

important property of the spectral curve Γ is that above any non-singular point (x, y) ∈ Γ

(dΓ(x, y) 6= 0) there is a unique eigenvector of Ω(x) with eigenvalue y. It follows that the

desingularised curve Σ has a unique eigenvector above any of its points. In the present case

where Ω(x) is 2× 2 the curve Σ is also hyperelliptic with projection denoted π̂ : Σ → CP
1;

we also introduce the notation {x±} = π̂−1(x) for the set of points above x ∈ CP
1.

The curve Σ is naturally equipped with a normalised second kind Abelian differential

dp, with singularities only at the points {(+1)±, (−1)±} above x = ±1, specified uniquely

by ∫

ai

dp = 0,

∫

bi

dp = 2πki ∈ Z,

dp(x±) = ∓d

(
πκ+

x − 1

)
+ O

(
(x − 1)0

)
as x → +1,

dp(x±) = ∓d

(
πκ−
x + 1

)
+ O

(
(x + 1)0

)
as x → −1,

(3.12)

where {ai, bi}g
i=1 is a canonical basis of H1(Σ, Z). The asymptotics of dp near the points

{0±,∞±} can be deduced [1] from the ‘highest weight’ conditions (2.11) and are directly

related to the Casimirs R2, L2 of SU(2)R × SU(2)L

dp(x±) = ∓d

[
1

x

2πR√
λ

+ O

(
1

x2

)]
, as x → ∞,

dp(x±) = ±d

[
x

2πL√
λ

+ O
(
x2

)]
, as x → 0.

(3.13)

The Abelian integral p(P ) =
∫ P

∞+ dp is called the quasi-momentum and has the property

that {eip(x+), eip(x−)} are the eigenvalues of Ω(x).

A convenient way of describing the moduli space of genus g curves Σ with punctures

at {1±, (−1)±, 0±,∞±} and equipped with a meromorphic differential dp with specified

behaviours (3.12), (3.13) near these punctures is as a leaf L in a foliation of the universal

configuration space of [14]. To make contact with the construction of the universal config-

uration space of [14] we also introduce another meromorphic differential dz by specifying
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its Abelian integral

z = x +
1

x
,

which is a single-valued function on Σ so that all periods of dz are zero (i.e.
∫
C

dz = 0 for

any cycle C ∈ H1(Σ, R)). The asymptotics of dz near the punctures are obvious from its

definition. Full details of this construction can be found in [1]. However, in [1] we chose to

keep R fixed, thereby describing only the internal degrees of freedom of the string by a leaf

L|R in a smooth g-dimensional foliation of the universal moduli space; in the present paper

we allow R to vary so the leaf L under consideration will now have one extra dimension.

Using the set of local coordinates on this universal configuration space introduced

in [14] the leaf in question is obtained as the joint level set of all but g+1 of the coordinates.

Defining the following differential on Σ

α =

√
λ

4π
zdp, (3.14)

the remaining g + 1 coordinates parametrising the leaf are [14]

Si =
1

2πi

∫

ai

α, i = 1, . . . , g,
R

2
= −Res∞+α. (3.15)

Equivalently one can parametrise the moduli space L by assigning a filling fractions to

each of the K = g + 1 cuts CI

SI =
1

2πi

∫

AI

α, I = 1, . . . ,K = g + 1, (3.16)

where AI is a cycle encircling the cut CI on the physical sheet. The filling fractions are

related to the variable R and the parameter L
2 = Res0+α by

K∑

I=1

SI = Res∞+α + Res0+α =
1

2
(L − R).

The moduli space L is therefore a complex manifold with only orbifold singularities of

dimension

dim L = g + 1,

every point of which corresponds to an admissible pair (Σ, dp) where Σ has genus g.

3.1.2 The normalised eigenvector

Let us denote by h(P, σ, τ) the unique normalised eigenvector of Ω(x, σ, τ) at a point P ∈ Σ

above x = π̂(P ), normalised by

α · h(P ) = 1, (3.17)

where we choose here6 α = (1, 1) following [3]. Its components are meromorphic functions

on Σ and it follows from a standard argument that h(P, σ, τ) has g + 1 poles7 on Σ in

6In contrast to [1] where the normalisation α = (1, 0) was used. Changing the normalisation of h will

obviously have no effect on the reconstructed solution since this is constructed out of a vector proportional

to h anyway.
7A vector v(P ) on Σ is said to have a pole at Q ∈ Σ if at least one of its components has a pole at Q.
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the present case, which we denote by γ̂(σ, τ). At this point we can fix some of the gauge

redundancy of (2.15) by using the gauge transformation h 7→ H(∞)−1h where H(x) =

(h(x+),h(x−)) to set h(∞+) =
(

1

0

)
,h(∞−) =

(
0

1

)
; note that this gauge transformation

preserves the normalisation of h because αH(x) = α. The residual gauge symmetry

consists of diagonal matrices g̃(σ, τ) = diag(d1, d2)

Ω(x) 7→ g̃Ω(x)g̃−1, h 7→ f(P )−1g̃h, where f(P ) = α · (g̃h(P )). (3.18)

The role of the function f(P ) is to keep h normalised. It has the effect of changing the

divisor γ̂(σ, τ) of poles of h to the equivalent divisor γ̂′(σ, τ) (∼ γ̂(σ, τ)) of zeroes of f .

Given a divisor γ̂(σ, τ) of degree g + 1, the following analytic properties uniquely specify

the components of h by the Riemann-Roch theorem

(h1) ≥ γ̂(σ, τ)−1∞−, h1(∞+) = 1, and (h2) ≥ γ̂(σ, τ)−1∞+, h2(∞−) = 1.

Note that the divisor of zeroes of h1 is γ(σ, τ)∞− where γ(σ, τ) denotes the ‘dynamical

divisor’ of degree g that was introduced in [1] (where h was normalised by 1
h1

forcing its

second component to have poles at γ(σ, τ)∞−).

The gauge fixing condition h(∞+) =
(

1

0

)
,h(∞−) =

(
0

1

)
imposed so far also fixes

part of the global SU(2)R symmetry of the equations of motion by restricting the SU(2)R
current j to the level set QR = 1

2i
Rσ3. Indeed, the constant part of (3.18) corresponds to

the unfixed U(1)R subgroup of the global SU(2)R symmetry group (in fact, before having

imposed reality conditions we are really dealing with a C
∗ subgroup of SL(2, C)R). Let

us end this section by showing that the choice of an initial value for the U(1)R angle

corresponds exactly to the choice of a representative of the equivalence class [γ̂(0, 0)].

Since a specific representative γ̂′(0, 0) =
∏g+1

i=1 γ̂′
i ∼ γ̂(0, 0) of the equivalence class

[γ̂(0, 0)] is uniquely specified by a single one of its points it suffices to show that for any

arbitrary point γ̂′
1 ∈ Σ there exists a unique diagonal g̃ ∈ SL(2, C)R such that f(γ̂′

1, 0, 0) =

0. But a generic diagonal matrix g̃ ∈ SL(2, C)R takes the form

g̃ =

(
W 0

0 W−1

)
, (3.19)

and so the requirement that f(γ̂′
1, 0, 0) = 0 simply reads W h1(γ̂

′
1, 0, 0)+W−1 h2(γ̂

′
1, 0, 0) =

0. The solution to this equation W 2 = −h2(γ̂
′
1, 0, 0)/h1(γ̂

′
1, 0, 0) is unique (up to a trivial

sign) and it follows that g̃ can be constructed uniquely in such a way that f(γ̂′
1, 0, 0) = 0.

For later use we also identify reality conditions on the representative of the equivalence

class [γ̂(0, 0)], or more precisely on changes between representatives of [γ̂(0, 0)]. Given two

equivalent divisors γ̂(0, 0) and γ̂′(0, 0) ∼ γ̂(0, 0) which are the poles and zeroes of f(P, 0, 0)

respectively, the reality requirement g̃ ∈ SU(2)R imposes a restriction on the function

f(P, 0, 0) and hence on the allowed change of divisor γ̂(0, 0) → γ̂′(0, 0), namely |W |2 = 1.

3.1.3 Vector Baker-Akhiezer functions

We now look for the analytic properties which uniquely specify the vector ψ solution to the

consistency condition (d − J(x)) ψ = 0 of (2.15); once the solution to this system is known,
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the Lax connection can be recovered (when x does not correspond to a branch point) by

J(x) = dΨ̂(x) · Ψ̂(x)−1 where Ψ̂(x) = (ψ(x+),ψ(x−)). Since the operators d − J(x) and

Ω(x) commute we can write ψ as

ψ(P, σ, τ) = Ψ̂(x, σ, τ)h(P, 0, 0), (3.20)

where Ψ̂(x, σ, τ) is a formal matrix solution to (d − J(x)) Ψ̂(x) = 0. For definiteness,

fix the initial condition to be ψ(P, 0, 0) = h(P, 0, 0) so that Ψ̂(x, 0, 0) = 1 and hence

Ψ̂(x) satisfies Ψ̂(x, σ, τ)Ω(x, 0, 0) = Ω(x, σ, τ)Ψ̂(x, σ, τ). Because J(x) has poles only at

x = ±1, Poincaré’s theorem on holomorphic differential equations implies that Ψ̂(x, σ, τ)

is holomorphic outside x = ±1. Its singularities at x = ±1 are essential singularities of the

form [1]

Ψ̂(x, σ, τ)e−
bS±(x,σ,τ) = O(1) in a neighbourhood of x = ±1,

where the singular parts Ŝ±(x, σ, τ) = iκ±
2

τ±σ
1∓x

σ3 =: s±(x, σ, τ)σ3 were determined using the

Virasoro constraints. Moreover, using the condition J(∞) = 0 we see that dΨ̂(∞, σ, τ) = 0

which implies Ψ̂(∞, σ, τ) = 1. This is enough to read off the analytic properties of ψ

from its representation in the form (3.20) which uniquely specify its components as Baker-

Akhiezer functions, namely

(ψ1) ≥ γ̂(0, 0)−1∞−, ψ1(∞+) = 1, and (ψ2) ≥ γ̂(0, 0)−1∞+, ψ2(∞−) = 1,

with

{
ψi(x

±, σ, τ)e∓s+(x,σ,τ) = O(1), as x → 1,

ψi(x
±, σ, τ)e∓s−(x,σ,τ) = O(1), as x → −1.

Given this data which uniquely specifies the Baker-Akhiezer vector ψ, one can reconstruct

the Lax connection J(x) = dΨ̂(x) · Ψ̂(x)−1 uniquely up to a residual gauge transformation.

Changing γ̂(0, 0) to an equivalent divisor γ̂′(0, 0) amounts simply to a scaling ψ → kψ by a

function k(P ) with divisor (k) = γ̂(0, 0)·γ̂′(0, 0)−1, which has no effect on the reconstructed

Lax connection J(x) = dΨ̂(x) · Ψ̂(x)−1; therefore the equivalence class [J(x)] of J(x) under

residual gauge transformations is uniquely specified by the equivalence class [γ̂(0, 0)] and

we have an injective map

[J(x)] 7→ {Σ, dp, [γ̂(0, 0)]} . (3.21)

Since the gauge fixing condition J(∞) = 0 imposed above still allows for residual gauge

transformations by constant diagonal matrices, corresponding precisely to the unfixed

U(1)R subgroup of the physical symmetry SU(2)R, the initial data pertaining to the U(1)R
symmetry cannot be determined by analytical considerations of the auxiliary linear system

(d − J(x)) ψ = 0. The best we can do is simplify the injective map (3.21) down to the

following injective map

[j] 7→ {Σ, dp, [γ̂(0, 0)]} , (3.22)

where [j] denotes the equivalence class of j under U(1)R conjugation. However, the U(1)R
initial angle was argued in section 3.1.2 to be fully specified by a choice of representative of

the equivalence class [γ̂(0, 0)]. Thus the full set of initial data of a finite-gap solution can
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be completely specified by a divisor γ̂(0, 0) of degree deg γ̂(0, 0) = g + 1. In other words

we end up with the following injective map

j 7→ {Σ, dp, γ̂(0, 0)} . (3.23)

This is the analogue of the flat space equation (3.4) in the case at hand of the nonlinear

equations of motion for a string moving on R × S3.

This complete set of algebro-geometric data {Σ, dp, γ̂(0, 0)} for an arbitrary finite-gap

solution j can be succinctly described as a point in the bundle M(2g+2)
C

over L

Sg+1(Σ) → M(2g+2)
C

→ L, (3.24)

whose fibre over every point of the base, specified by a curve Σ, is the (g +1)-st symmetric

product Sg+1(Σ) = Σg+1/Sg+1 of Σ. If R where to be held fixed and the global U(1)R
symmetry factored out (as was the case in [1]), then the leaf would be reduced to L|R (see

section 3.1.1) and the U(1)R-reduced solution [j] uniquely specified by the equivalence class

[γ̂(0, 0)] (see (3.22)) so that the relevant bundle in the U(1)R-reduced case is [1]

J(Σ) → M(2g)
C

→ L|R,

using the Abel map A : Sg(Σ) → J(Σ) to identify each fibre with the Jacobian J(Σ).

3.1.4 General finite-gap solution

Since the map (3.22) is injective (essentially by the Riemann-Roch theorem), it admits a

left inverse

{Σ, dp, [γ̂(0, 0)]} 7→ [j], (3.25)

which takes a given set of admissible algebro-geometric data into a solution of the equations

of motion (2.3) and the Virasoro constraints (2.8). This solution can be formally read off

from the Lax connection J(x) = (j −x ∗ j)/(1−x2) constructed out of the Baker-Akhiezer

vector ψ, namely

J(x) = dΨ̂(x) · Ψ̂(x)−1 with Ψ̂(x) = (ψ(x+),ψ(x−)), (3.26)

as already mentioned in the previous section. However, the algebro-geometric reconstruc-

tion of the solution gives more than just a formal or implicit expression since vector Baker-

Akhiezer functions on a Riemann surface Σ admit explicit representations in terms of

Riemann θ-functions associated with Σ, thus enabling us to write down explicit formulae

for the current j.

The analogue of the general flat space solution (3.1) with finitely many oscillators

turned on, called a finite-gap solution, which solves both (2.3) and (2.8) was constructed

in [1]. Its construction is based on an algebraic curve Σ of finite genus g and is given by

the following expression for the light-cone components of the current j

j±(σ, τ) = e

(
i
2
θ̄0− i

2

R ∞+

∞− dQ
)
σ3Θ±

(
A(γ̂(0, 0)) −

∫

b

dQ;A(γ̂(0, 0))

)

× (iκ±σ3) Θ±

(
A(γ̂(0, 0)) −

∫

b

dQ;A(γ̂(0, 0))

)−1

e−
(

i
2
θ̄0− i

2

R ∞+

∞− dQ
)
σ3 , (3.27)

where the notation used is defined as follows:
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• The differential dQ(σ, τ) is the unique normalised second kind Abelian differential

with double poles at the points above x = ±1 of the prescribed form

dQ ∼
x→±1

idS±,

where S±(P, σ, τ) are the singular parts of the problem defined as





S+(x±, σ, τ) = ∓ iκ+

2

σ + τ

x − 1
,

S−(x±, σ, τ) = ∓ iκ−
2

σ − τ

x + 1
.

Note, the matrix Ŝ±(x, σ, τ) defined in the pervious section is simply the diagonal

matrix diag (−S±(x+, σ, τ),−S±(x−, σ, τ)).

• The divisor γ̂(0, 0) is the divisor of poles of h(P, 0, 0) described in the previous sec-

tions. Its degree is deg γ̂(0, 0) = g + 1 and so it lives in the (g + 1)-st symmetric

product Sg+1(Σ) = Σg+1/Sg+1 of the curve Σ which is mapped surjectively onto the

Jacobian J(Σ) of Σ by means of the Abel map

A : Sg+1(Σ) → J(Σ)

g+1∏

i=1

Pi 7→ 2π

g+1∑

i=1

∫ Pi

∞+

ω.
(3.28)

• The solution can only be recovered up to conjugation by constant diagonal matrices

corresponding precisely to the C
∗ subgroup of SL(2, C)R (which becomes the U(1)R

subgroup of SU(2)R after reality conditions are imposed) that preserves the level

set QR = 1
2i

Rσ3. This undetermined C
∗ conjugation matrix can be expressed in

terms of a single arbitrary constant θ̄0 ∈ C as e
i
2
θ̄0σ3 . As we have argued, the initial

U(1)R angle θ̄0 can be specified by the representative γ̂(0, 0) of the equivalence class

A(γ̂(0, 0)). The relation of θ̄0 to γ̂(0, 0) will become clear in section 3.4 when we

will extend the target of the Abel map (3.28) topologically by a C
∗ factor, turning it

into an extended Abel map ~A : Sg+1(Σ) → J(Σ,∞±) that maps bijectively into the

generalised Jacobian J(Σ,∞±) to be defined later.

• The function Θ± is 2 × 2 matrix valued and its only feature we are interested in for

the present purposes is that its (σ, τ)-dependence enters solely through the b-periods

of dQ(σ, τ) in the expression

A(γ̂(σ, τ)) = A(γ̂(0, 0)) −
∫

b

dQ(σ, τ).

Likewise, it is important to note that the quantity entering in the exponents of

expression (3.27) for j± is just (minus) the Bg+1-period of dQ(σ, τ), namely

∫ ∞+

∞−
dQ(σ, τ) = −

∫

Bg+1

dQ(σ, τ).
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Moreover, from (3.26) we can also write down a formal expression for the fundamental

field g, out of which the SU(2)R current j = −g−1dg = (dg−1)g is constructed, up to an

SU(2)L symmetry (or SL(2, C)L before imposing reality conditions)

g =

√
detΨ̂(0) · Ψ̂(0)−1 ∈ SL(2, C).

As for the current j above, an explicit representations of the group element g in terms

of Riemann θ-functions associated with Σ can also be constructed. Making use of the dual

Baker-Akhiezer vector [1] to express Ψ̂(0)−1 we find that the components Zi of g in (2.1)

are proportional to the components ψ̃+
i (0+) of the dual Baker-Akhiezer vector at P = 0+,

i.e.

Z1 = Z1(0, 0)
θ
(
2π

∫ 0+

∞+ ω −
∫
b
dQ− D

)

θ
( ∫

b
dQ + D

) exp

(
−i

∫ 0+

∞+

dQ
)

,

Z2 = Z2(0, 0)
θ
(
2π

∫ 0+

∞− ω −
∫
b
dQ− D

)

θ
( ∫

b
dQ + D

) exp

(
−i

∫ 0+

∞−
dQ

)
,

where D = A(γ̂+(0, 0)) + K ∈ Cg (γ̂+(0, 0) being the dual divisor to γ̂(0, 0), see (3.47),

and K being the vector of Riemann’s constants) is almost arbitrary and Zi(0, 0) ∈ C

are constants which can be expressed in terms of the algebro-geometric data. Using the

property σ̂∗dQ = −dQ of the differential dQ where σ̂x± = x∓ is the hyperelliptic involution

of Σ we can rewrite the above expressions in a way that emphasises the linearisation of the

motion in the global SU(2)R × SU(2)L directions, namely8

Z1 = Z1(0, 0)
θ
(
2π

∫ 0+

∞+ ω −
∫
b
dQ− D

)

θ
( ∫

b
dQ + D

) exp

(
+

i

2

∫ ∞+

∞−
dQ− i

2

∫ 0+

0−
dQ

)
, (3.29a)

Z2 = Z2(0, 0)
θ
(
2π

∫ 0+

∞− ω −
∫
b
dQ− D

)

θ
( ∫

b
dQ + D

) exp

(
− i

2

∫ ∞+

∞−
dQ− i

2

∫ 0+

0−
dQ

)
. (3.29b)

3.2 Extracting data

Because (3.27) is the general solution to the field equations (2.3), its restriction to a given τ -

slice, say τ = 0, can be used as a convenient parametrisation of the most general phase-space

configuration j(σ) = (j0(σ), j1(σ)) of the string. Furthermore, since the current (3.27)

also satisfies the Virasoro constraints (2.8), the parameters it depends on are independent

physical degrees of freedom of the string. In the remainder of the paper we shall therefore

use the following parametrisation of the phase-space configuration j(σ)

j±(σ) = e

(
i
2
θ̄0+ i

2
ng+1σ

)
σ3Θ± (A(γ̂(0, 0)) − kσ;A(γ̂(0, 0)))

× (iκ±σ3) Θ± (A(γ̂(0, 0)) − kσ;A(γ̂(0, 0)))−1 e−
(

i
2
θ̄0+ i

2
ng+1σ

)
σ3 , (3.30)

8These solutions seem to be closely related to the solutions obtained in an appendix of [6] following the

method of [15]. One apparant difference, however, is that the latter are constructed from the Θ-functions

of a certain double-cover of the spectral curve Σ considered here. We do not yet understand the precise

connection between the two results.

– 25 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
5

where k =
∫
b

dp
2π

and ng+1 =
∫
Bg+1

dp
2π

after noting that dQ(σ, 0) = σ
2π

dp. This is the

analogue of the mode expansion (3.2) for the general phase-space configuration in the flat-

space case. Just as one can also extract the parameters of the mode expansion (3.3) from

a general phase-space configuration in flat-space, it is possible to extract the divisor γ̂(0, 0)

from a general ‘finite-gap’ phase-space configuration (3.30) as we now show.

Indeed, the divisor γ̂(0, 0) of poles of h(P, 0, 0) can be extracted à la Sklyanin from

Ω(x) ≡ Ω(x, 0, 0). Introducing the notation hi = resP=γ̂i
h(P, 0, 0) where γ̂(0, 0) =

∏g+1
i=1 γ̂i,

we have {
Ω(xγ̂i

)hi = Λ(γ̂i)hi,

α · hi = 0.
(3.31)

However, to simplify the forthcoming calculations of Poisson brackets we perform the fol-

lowing similarity transformation on the system of equations (3.31)

hi 7→
(

1 1

0 1

)
hi = h̃i, Ω(xγ̂i

) 7→
(

1 1

0 1

)
Ω(xγ̂i

)

(
1 −1

0 1

)
= Ω̃(xγ̂i

), (3.32)

so that the system now reads




Ω̃(xγ̂i
)h̃i = Λ(γ̂i)h̃i,(

h̃i

)
1

= 0.

The points {γ̂i}g+1
i=1 of the divisor γ̂(0, 0) are therefore characterised in terms of the com-

ponents Ã(x) and B̃(x) of

Ω̃(x) =

(
Ã(x) B̃(x)

C̃(x) D̃(x)

)
=

(
1 1

0 1

)(
A(x) B(x)

C(x) D(x)

)(
1 −1

0 1

)
, (3.33)

as follows

B̃(xγ̂i
) = 0, Λ(γ̂i) = D̃(xγ̂i

) = Ã(xγ̂i
)−1. (3.34a)

Note that B̃(x) actually has infinitely many zeroes but only g + 1 of them constitute the

divisor γ̂(0, 0), the remaining zeroes being the singular points of the curve Γ. Thus the

initial data γ̂(0, 0) pertaining to the divisor γ̂(σ, τ), i.e. to the physical degrees of freedom,

can be retrieved from the Ã and B̃ components of

Ω̃(x) =

(
1 1

0 1

)
P←−exp

∫ 2π

0
dσ′ 1

2

(
j+(σ′)

1 − x
− j−(σ′)

1 + x

)(
1 −1

0 1

)
. (3.34b)

Equations (3.34a) and (3.34b) will be our way of extracting the initial data pertaining to

the physical degrees of freedom from a general field configuration. This is the non-linear

analogue of extracting the Fourier coefficients in the flat space case, c.f. equation (3.3).

Note that the matrix from which one reads off the divisor γ̂(0, 0) isn’t exactly the

monodromy matrix Ω(x) itself but instead a similarity transformation of it, namely

Ω̃(x) =

(
1 1

0 1

)
Ω(x)

(
1 −1

0 1

)
.
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Therefore in appendix B we relate the bracket {Ω̃(x)⊗, Ω̃(x′)} to the bracket (2.22) of mon-

odromy matrices. The result is simply that the matrix Ω̃(x) satisfies exactly the same

algebra as the monodromy matrix Ω(x) itself, and so we shall henceforth only refer to Ω̃(x)

since it is the matrix relevant for retrieving the divisor γ̂(0, 0).

3.3 Poisson brackets of algebro-geometric data

Poisson brackets between the components Ã(x) and B̃(x) of Ω̃(x) can be deduced

from (2.22) as is done in appendix C,

{
Ã(x), Ã(x′)

}
=

(
B̃(x)C̃(x′) − B̃(x′)C̃(x)

)
ŝ(x, x′), (3.35a)

{
Ã(x), B̃(x′)

}
=

(
Ã(x)B̃(x′) + Ã(x′)B̃(x)

)
r̂(x, x′) (3.35b)

+
(
Ã(x)B̃(x′) + D̃(x′)B̃(x)

)
ŝ(x, x′), (3.35c)

{
B̃(x), B̃(x′)

}
= 0, (3.35d)

where r̂(x, x′) and ŝ(x, x′) are defined as r(x, x′) and s(x, x′) respectively without the

factors of η, i.e. r(x, x′) = r̂(x, x′)η and s(x, x′) = ŝ(x, x′)η.

In this subsection, we will show that the above relations imply non-trivial Poisson

brackets between the complex variables comprising the algebro-geometric data. We will

consider the implications of the three relations (3.35) in turn. First we take the limit

x′ → xγ̂l
of (3.35a). Using (3.34) this gives

{Ã(x),Λ(γ̂l)
−1} = B̃(x)C̃(xγ̂l

)ŝ (x, xγ̂l
) . (3.36)

Taking the limit x → xγ̂k
immediately gives,

{Λ(γ̂k)−1,Λ(γ̂l)
−1} = 0.

We now turn to the Poisson bracket (3.35b). Taking the limit x → xγ̂l
first gets rid of

the terms proportional to B̃(x) (using B̃(xγ̂l
) = 0) and leaves

{
Ã(xγ̂l

), B̃(x′)
}

= Ã(xγ̂l
)B̃(x′)

(
r̂(xγ̂l

, x′) + ŝ(xγ̂l
, x′)

)
.

Now using (3.34) we can write B̃(x′) = (x′ − xγ̂k
)B̃k(x

′) with B̃k(xγ̂k
) 6= 0, so that

(x′ − xγ̂k
)
{
Ã(xγ̂l

), B̃k(x′)
}
−

{
Ã(xγ̂l

), xγ̂k

}
B̃k(x

′)

= Ã(xγ̂l
)(x′ − xγ̂k

)B̃k(x
′)

(
r̂(xγ̂l

, x′) + ŝ(xγ̂l
, x′)

)
,

where

r̂(xγ̂l
, x′) + ŝ(xγ̂l

, x′) = − 2π√
λ

x2
γ̂l

+ x′2 − 2x2
γ̂l

x′2

(xγ̂l
− x′)(1 − x2

γ̂l
)(1 − x′2)

− 2π√
λ

xγ̂l
+ x′

(1 − x2
γ̂l

)(1 − x′2)
.

It is easy to see that taking the limit x′ → xγ̂k
with k 6= l kills everything but the second

term on the left hand side, leaving {Ã(xγ̂l
), xγ̂k

} = 0, k 6= l. Now setting k = l and taking
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the limit x′ → xγ̂l
kills the ŝ term leaving −

{
Ã(xγ̂l

), xγ̂l

}
= 4π√

λ
Ã(xγ̂l

)
x2

γ̂l

1−x2
γ̂l

. Thus, again

using (3.34), we have

{
Λ(γ̂l)

−1, xγ̂k

}
=

4π√
λ

Λ(γ̂l)
−1

x2
γ̂l

x2
γ̂l
− 1

δkl.

Finally we turn our attention to (3.35d). Again, writing B̃(x) = (x − xγ̂l
)B̃l(x) it

immediately follows from the third equation (3.35d) that
{
xγ̂l

, B̃(x′)
}

= 0 which in turn

implies that for all k, l = 1 . . . , g + 1

{xγ̂l
, xγ̂k

} = 0.

The algebro-geometric data needed to reconstruct a finite-gap solution is specified by

the 2K = 2(g + 1) complex coordinates, {xγ̂l
,Λ(γ̂l)} for l = 1, . . . , g + 1. The results

obtained above constitute a complete set of Poisson brackets for these variables. To write

these brackets in canonical form we change variables to,

z(γ̂l) = xγ̂l
+

1

xγ̂l

, P(γ̂l) =

√
λ

4π
log Λ(γ̂l).

Note that P(γl) is related to the quasi-momentum at the point γ̂l as P(γ̂l) = i
√

λ
4π

p(γ̂l).

In these variables the complete set of Poisson brackets for the algebro-geometric data

becomes,

{z(γ̂l), z(γ̂m)} = 0, (3.37)

{P(γ̂l),P(γ̂m)} = 0,

{z(γ̂l),P(γ̂m)} = δlm.

3.4 Action-angle variables

The change of coordinates to action-angle variables is fairly standard and was reviewed

in the case of the internal degrees of freedom of the string in [1]. Here we construct

the complete set of action-angle variables starting from the algebro-geometric symplectic

form (3.37) on M(2g+2)
C

obtained in the previous section,

ω̂2K = −
√

λ

4πi

g+1∑

i=1

δp(γ̂i) ∧ δz(γ̂i), (3.38)

which is naturally defined on the symmetric product bundle M(2g+2)
C

over L introduced

in (3.24).

3.4.1 Symplectic transformation

It is useful to consider first the universal curve bundle N over the leaf L

Σ → N → L,
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whose fibre over every point of the base L is the corresponding curve Σ. Recall from

section 3.1.1 that the {Si}g
i=1 and R defined in (3.15) form a set of coordinates on the base

L, and note that z can be taken as a coordinate along the fibre. Denote by δ the exterior

derivative on the total space N and consider the differential δα̃ of α̃ = −
√

λ
4πi

pdz on N

−
√

λ

4πi
δp ∧ dz = δα̃ =

g∑

i=1

δSi ∧ ∂Si
α̃ +

1

2
δR ∧ ∂R

2

α̃. (3.39)

The coordinates {Si}g
i=1 and R can be expressed in terms as the appropriately normalised

a-periods and residue at ∞+ of the differential α̃,

Si =
1

2π

∫

ai

α̃, i = 1, . . . , g,
R

2
= − 1

2π

∫

c∞+

α̃, (3.40)

where c∞+ is a counter-clockwise cycle around the point ∞+ ∈ Σ. Now the key observation

is that although α̃ is neither single-valued nor holomorphic on Σ, the ambiguities in its

definition are constant along the leaf L and its pole parts are constant except for those

around ∞± ∈ Σ which are proportional to R. It follows therefore from (3.40) that

∂Si
α̃ = 2πωi, i = 1, . . . , g, ∂R

2

α̃ = −2πω∞,

where ω∞ is the normalised Abelian differential of the third kind with simple poles at ∞±

with residues ± 1
2πi

respectively. Therefore (3.39) simplifies to

δα̃ =

g∑

i=1

δSi ∧ 2πωi −
1

2
δR ∧ 2πω∞.

This differential δα̃ living on N can be used to define the symplectic form ω̂2K on

M(2g+2)
C

by the following expression which is symmetric in the points γ̂j ∈ Σ, j = 1, . . . , g+

1,

ω̂2K =

g+1∑

j=1

δα̃(γ̂j) =

g∑

i=1

δSi ∧ 2π




g+1∑

j=1

ωi(γ̂j)


 − 1

2
δR ∧ 2π




g+1∑

j=1

ω∞(γ̂j)


 .

However, the (g + 1)st symmetric product Sg+1(Σ) = Σg+1/Sg+1 of the curve Σ is isomor-

phic to the (g + 1)-dimensional generalised Jacobian9 J(Σ,∞±) of the curve Σ with two

punctures at ∞± via the extended Abel map

~A : Sg+1(Σ) → J(Σ,∞±)

D =

g+1∏

j=1

Pj 7→ (A(D),Ag+1(D)) =


2π

g+1∑

j=1

∫ Pj

P0

ω,−2π

g+1∑

j=1

∫ Pj

P0

ω∞


 ,

(3.41)

9The generalised Jacobian is an extension of the standard notion of a Jacobian to singular surfaces (see

for example [22] and references therein) which can be thought of as limits of regular Riemann surfaces. In the

present case the singular curve is Σ/{∞±} (with a degenerated handle at ∞) and its generalised Jacobian

J(Σ,∞±) is topologically equivalent to the Cartesian product J(Σ) × C
∗ of the standard g-dimensional

Jacobian J(Σ) with the cylinder C
∗ = C \ {0}.
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where P0 ∈ Σ is arbitrary. The first g components of this map make up the usual Abel

map A : Sg+1(Σ) → J(Σ) defined in (3.28) on divisors of degree g + 1. Whereas the Abel

map (3.28) was surjective, the extended Abel map (3.41) is bijective.

So if we define (complex) coordinates on J(Σ,∞±) as

θ = A(γ̂(0, 0)), θ̄ = Ag+1(γ̂(0, 0)) (3.42)

and identify M(2g+2)
C

with the extended Jacobian bundle J(Σ,∞±) → J (Σ) → L using

the extended Abel map (3.41) then

ω̂2K =

g∑

i=1

δSi ∧ δθi +
1

2
δR ∧ δθ̄. (3.43)

It will be convenient to consider a slightly different set of action-angle variables first pro-

posed in [1] in which the filling fractions (3.16) play the role of the action variables. For

this we rewrite (3.43) as follows

ω̂2K =

g∑

i=1

δSi ∧
(
δθi − δθ̄

)
+

(
1

2
δR +

g∑

i=1

δSi

)
∧ δθ̄

=

g∑

i=1

δSi ∧ δ
(
θi − θ̄

)
+ δ

(
L − R

2
−

g∑

i=1

Si

)
∧ δ

(
−θ̄

)
,

(3.44)

where in the second line we use the fact that δL = 0 since L is fixed along the leaf L
under consideration. Now recalling the definition of the K = g +1 filling fractions {SI}K

I=1

introduced in (3.16) and introducing a new set of angle variables {ϕI}K
I=1 related to the

θ, θ̄ by [1]

ϕI = θi − θ̄ for I = i = 1, . . . , g = K − 1, ϕK = −θ̄,

then equation (3.44) reads

ω̂2K =

K∑

I=1

δSI ∧ δϕI . (3.45)

3.4.2 Reality conditions

The reality of the action variables (3.40)

S̄i = Si, i = 1, . . . , g, R̄ = R,

follows immediately [1] from the reality conditions τ̂∗α̃ = −α̃, τ̂a = −a and τ̂ c∞+ = −c∞+

on the 1-form α̃, the a-periods and the cycle c∞+ .

Obtaining real angle variables (3.42) is slightly more involved. In fact, as defined

in (3.42) the angles θ, θ̄ are not real but can be made real after substraction of a constant

in each case, which does not affect the result (3.43) of the previous section. We start by

recalling from [1] how to obtain real angles θ.

The equivalence class [γ̂(0, 0)] of the degree g+1 divisor γ̂(0, 0) satisfies a simple reality

condition [1], namely

τ̂ γ̂(0, 0) ∼ γ̂+(0, 0), (3.46)
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where γ̂+(0, 0) is the dual divisor to γ̂(0, 0). The dual divisor is of degree g + 1 and can be

defined up to equivalence by the relation

γ̂(0, 0) · γ̂+(0, 0) ∼ Z · (∞+)2 · (∞−)2, (3.47)

where Z is the canonical class, i.e. the divisor of any Abelian differential (the ratio of any

two Abelian differential is a meromorphic function and so their divisors are equivalent).

Putting equations (3.46) and (3.47) together, the reality condition on [γ̂(0, 0)] can be

expressed as follows

γ̂(0, 0) · τ̂ γ̂(0, 0) ∼ Z · (∞+)2 · (∞−)2. (3.48)

If the base point P0 of the Abel map is chosen to be real, i.e. such that τ̂P0 = P0, then

the reality condition on the Abel map reads A(τ̂D) = −A(D). It follows then from (3.48)

that

2 Im A(γ̂(0, 0)) = A
(
Z · (∞+)2 · (∞−)2

)
.

This yields the reality condition on the first g components A(γ̂(0, 0)) of ~A(γ̂(0, 0)). The

angle coordinates θ are rendered real after the following redefinition

θ = A(γ̂(0, 0)) − 1

2
A(Z · (∞+)2 · (∞−)2) ∈ Re J(Σ). (3.49)

We now turn to the reality of the angle θ̄. For this we show that under a change

of representative of the class [γ̂(0, 0)] which is such that the reality condition |W |2 = 1

on (3.19) is satisfied, the corresponding change ∆θ̄ in the angle θ̄ is real. It would follow

from this that representatives of [γ̂(0, 0)] which give rise to real solutions are mapped under

Ag+1 to a real subspace of C, i.e. Ag+1(γ̂(0, 0)) − C ∈ R for some constant C ∈ C.

Recall the function f(P, 0, 0) = Wh1(P, 0, 0) − W−1h2(P, 0, 0) introduced in (3.18)

which has poles at γ̂(0, 0) and zeroes at the equivalent divisor γ̂′(0, 0) =
∏g+1

i=1 γ̂′
i ∼ γ̂(0, 0),

and consider the differential df/f = d log f . Its only poles are at γ̂(0, 0) with residues −1

and at γ̂′(0, 0) with residues +1. For an arbitrary pair of points P,Q ∈ Σ, let us denote

by ωPQ the unique normalised (vanishing a-periods) Abelian differential of the third kind

with simple poles at P and Q with residues +1 and −1 there respectively. Then it follows

that

df

f
−

g+1∑

j=1

ωγ̂′
j γ̂j

=

g∑

i=1

ciωi, (3.50)

for some constants ci ∈ C. Taking the Bg+1-period of the last equation yields

∫ ∞+

∞−

df

f
−

g+1∑

j=1

∫ ∞+

∞−
ωγ̂′

j γ̂j
=

g∑

i=1

ci

∫ ∞+

∞−
ωi. (3.51)

Taking the a-periods of the equation (3.50) on the other hand gives the constants ci,

ci =

∫

ai

df

f
=

∫

ai

d log f = 2πimi, mi ∈ Z.
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Now using the Riemann bilinear identities it is straightforward to show that

∫ ∞+

∞−
ωγ̂′

j γ̂j
= 2πi

∫ γ̂′
j

γ̂j

ω∞,

∫ ∞+

∞−
ωi =

∫

bi

ω∞, (3.52)

and so plugging this back into (3.51) yields the following

∫ ∞+

∞−

df

f
− 2πi

g+1∑

j=1

∫ γ̂′
j

γ̂j

ω∞ = 2πi

g∑

i=1

mi

∫

bi

ω∞.

Referring back to the definition of the extended Abel map (3.41) we recognise the second

term on the left hand side of the last expression as the difference between the (g + 1)st

components of the Abel maps of the divisors γ̂′(0, 0) and γ̂(0, 0),

∆θ̄ = Ag+1(γ̂
′(0, 0)) −Ag+1(γ̂(0, 0)) = i

∫ ∞+

∞−

df

f
+ 2π

g∑

i=1

mi

∫

bi

ω∞. (3.53)

So to show that ∆θ̄ ∈ R it suffices to show the right hand side of (3.53) is real. Consider

the first term, which using the limits f(∞±) = W±1 can be simplified as

∫ ∞+

∞−

df

f
=

∫ ∞+

∞−
d log f = log

(
f(∞+)

f(∞−)

)
= 2 log W.

This last expression holds as an equality only on C/2πiZ. We now make use of the reality

condition |W |2 = 1 on the residual symmetry (3.19), which can be rewritten W = W−1,

and deduce that

i

∫ ∞+

∞−

df

f
∈ R/2πZ.

Furthermore, using (3.52) and the reality conditions τ̂∗ω = −ω, τ̂Bg+1 = Bg+1 −
∑g

k=1 ak

one can show that ∫

bi

ω∞ = −
∫

bi

ω∞ + 1,

so after imposing the reality constraint |W |2 = 1, equation (3.53) implies that

∆θ̄ ∈ R/2πZ. (3.54)

As we have already remarked, it follows now from (3.54) that the image under Ag+1 of the

representatives of [γ̂(0, 0)] which give rise to real solutions forms a real subspace of C, i.e.

θ̄ = Ag+1(γ̂(0, 0)) − C ∈ R/2πZ. (3.55)
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A. Algebra of transition matrices

We start with the Poisson bracket (2.17) between two J1(σ, x) matrices for a non-ultralocal

system in the (r−s)-matrix formalism introduced by Maillet [20] which can be conveniently

rewritten as

{
J1(σ, x)⊗, J1(σ

′, x′)
}

=
[
r(σ, x, x′), J1(σ, x) ⊗ 1 + 1⊗ J1(σ

′, x′)
]
δ(σ − σ′)

−
[
s(σ, x, x′), J1(σ, x) ⊗ 1 − 1⊗ J1(σ

′, x′)
]
δ(σ − σ′) (A.1)

−
(
r(σ, x, x′) + s(σ, x, x′) − r(σ′, x, x′) + s(σ′, x, x′)

)
δ′(σ − σ′),

using the identity (f(σ) − f(σ′)) δ′(σ−σ′) = −f ′(σ)δ(σ−σ′) valid for any function f . Now

the transition matrix

T (σ1, σ2, x) = P←−exp

∫ σ1

σ2

dσJ1(σ, x),

is the unique solution to the following differential equation with boundary condition

∂T

∂σ1
(σ1, σ2, x) = J1(σ1, x)T (σ1, σ2, x), T (σ2, σ2, x) = 1. (A.2)

It also satisfies the following differential equation with the same boundary condition

∂T

∂σ2
(σ1, σ2, x) = −T (σ1, σ2, x)J1(σ2, x), T (σ1, σ1, x) = 1.

The variation of the system (A.2) gives

∂δT

∂σ1
(σ1, σ2, x) = δJ1(σ1, x)T (σ1, σ2, x) + J1(σ1, x)δT (σ1, σ2, x), δT (σ1, σ1, x) = 0,

of which the unique solution is easily seen to be

δT (σ1, σ2, x) =

∫ σ1

σ2

dσT (σ1, σ, x)δJ1(σ, x)T (σ, σ2, x),

=

∫ 2π

0
dσε(σ1 − σ2)χ(σ;σ1, σ2)T (σ1, σ, x)δJ1(σ, x)T (σ, σ2, x),

(A.3)

where ε(σ) = sign(σ) is the usual sign function and χ(σ;σ1, σ2) is the characteristic function

of the interval between σ1 and σ2.

Now given the Poisson bracket of the system

{
A⊗, B

}
=

∫
dσ

(
δA

δqa(σ)
⊗ δB

δπa(σ)
− δA

δπa(σ)
⊗ δB

δqa(σ)

)
, (A.4)

one can relate the bracket of transition matrices to the bracket of currents (A.1) using (A.3)

{
T (σ1, σ2, x)⊗, T (σ′

1, σ
′
2, x

′)
}

=

∫ σ1

σ2

dσ

∫ σ′
1

σ′
2

dσ′ (T (σ1, σ, x) ⊗ T (σ′
1, σ

′, x′)
)

(A.5)

×
{
J1(σ, x)⊗, J1(σ

′, x′)
} (

T (σ, σ2, x) ⊗ T (σ′, σ′
2, x

′)
)
.
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Now plugging (A.1) into this expression, one finds after a bit of algebra

{
T (σ1, σ2, x)⊗, T (σ′

1
, σ′

2
, x′)

}
=

∫
2π

0

dσ

∫
2π

0

dσ′χ(σ; σ1, σ2)χ(σ′; σ′

1
, σ′

2
)ε(σ1−σ2)ε(σ

′

1
−σ′

2
)

×
[

∂

∂σ

(
T (σ1, σ, x)⊗T (σ′

1
, σ′, x′)(r(σ, x, x′)−s(σ, x, x′))T (σ, σ2, x)⊗T (σ′, σ′

2
, x′)δ(σ−σ′)

)

+
∂

∂σ′

(
T (σ1, σ, x)⊗T (σ′

1
, σ′, x′)

(
r(σ, x, x′)+s(σ, x, x′)

)
T (σ, σ2, x)⊗T (σ′, σ′

2
, x′)δ(σ−σ′)

)]
.

Integrating by parts and using the identity − ∂
∂σ

χ(σ;σ1, σ2)ε(σ1−σ2) = δ(σ−σ1)−δ(σ−σ2)

we obtain

{
T (σ1, σ2, x)⊗, T (σ′

1, σ
′
2, x

′)
}

= +ε(σ′
1 − σ′

2)χ(σ;σ′
1, σ

′
2) × T (σ1, σ, x) ⊗ T (σ′

1, σ, x′) (A.6)
(
r(σ, x, x′) − s(σ, x, x′)

)
T (σ, σ2, x) ⊗ T (σ, σ′

2, x
′) |σ=σ1

σ=σ2

+ε(σ1 − σ2)χ(σ;σ1, σ2) × T (σ1, σ, x) ⊗ T (σ′
1, σ, x′)

(
r(σ, x, x′) + s(σ, x, x′)

)
T (σ, σ2, x) ⊗ T (σ, σ′

2, x
′) |σ=σ′

1

σ=σ′
2

B. SL(2, C)-invariance of {Ω ,⊗ Ω}

In this appendix we wish to find how the Poisson bracket
{
Ω⊗,Ω

}
transforms under a

general similarity transformation of Ω(x) → Ω̃(x) = U−1Ω(x)U , U ∈ SL(2, C). Using the

shorthand notation
1
A = A ⊗ 1,

2
A = 1 ⊗ A we can write

{
1

Ω̃(x),
2

Ω̃(x′)

}
=

{
1

U−1
1
Ω(x)

1
U,

2

U−1
2
Ω(x′)

2
U

}
=

1

U−1
2

U−1

{
1
Ω(x),

2
Ω(x′)

}
1
U

2
U

=
1

U−1
2

U−1

([
12
r (x, x′),

1
Ω(x)

2
Ω(x′)

]
+

1
Ω(x)

12
s (x, x′)

2
Ω(x′) −

2
Ω(x′)

12
s (x, x′)

1
Ω(x)

)
1
U

2
U

=
[12

r̃ (x, x′),
1

Ω̃(x)
2

Ω̃(x′)
]

+
1

Ω̃(x)
12

s̃ (x, x′)
2

Ω̃(x′) −
2

Ω̃(x′)
12

s̃ (x, x′)
1

Ω̃(x),

where r̃(x, x′) = U−1 ⊗ U−1r(x, x′)U ⊗ U and s̃(x, x′) = U−1 ⊗ U−1s(x, x′)U ⊗ U . Now

since r(x, x′) and s(x, x′) are both proportional to η = −ta ⊗ ta, we can compute the

transformations of r(x, x′) and s(x, x′) simultaneously by considering

(
U−1 ⊗ U−1

)
η (U ⊗ U) =

(
U−1 ⊗ 1

) (
1⊗ U−1

)
η (U ⊗ 1) (1 ⊗ U) .

Considering an infinitesimal transformation U = eα ∼ 1 + α + O(α2), α ∈ sl(2, C), one

finds straightforwardly that

((1 − α) ⊗ (1 − α)) η ((1 + α) ⊗ (1 + α)) ∼ η + O(α2).

Therefore η is invariant under infinitesimal similarity transformations. It follows then that

r̃(x, x′) = r(x, x′) and s̃(x, x′) = s(x, x′), so that the (weak) bracket
{
Ω⊗,Ω

}
ends up being
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invariant under similarity transformations as well, namely the same bracket (2.22) holds

for the transformed monodromy matrix Ω̃(x)

{
Ω̃(x)⊗, Ω̃(x′)

}
= [r(x, x′), Ω̃(x) ⊗ Ω̃(x′)]

+
(
Ω̃(x) ⊗ 1

)
s(x, x′)

(
1 ⊗ Ω̃(x′)

)

−
(
1⊗ Ω̃(x′)

)
s(x, x′)

(
Ω̃(x) ⊗ 1

)
.

(B.1)

C. Algebra of Ã(x) and B̃(x) components

Let us express the right hand side of (B.1) in terms of the components (3.33) of Ω̃(x). We

have

Ω̃(x) ⊗ Ω̃(x′) =

(
Ã(x)Ω̃(x′) B̃(x)Ω̃(x′)

C̃(x)Ω̃(x′) D̃(x)Ω̃(x′)

)
,

1 ⊗ Ω̃(x′) =

(
Ω̃(x′) 0

0 Ω̃(x′)

)
, Ω̃(x) ⊗ 1 =

(
Ã(x)1 B̃(x)1

C̃(x)1 D̃(x)1

)
,

and since the matrices r(x, x′) and s(x, x′) are both proportional to η with

η = −ta ⊗ ta =
1

2
σa ⊗ σa =

1

2

(
σ3 σ1 − iσ2

σ1 + iσ2 −σ3

)
,

where ta = i√
2
σa in the su(2) case (σa being the Pauli matrices), we need to compute the

following quantities

ηΩ̃(x) ⊗ Ω̃(x′)

=
1

2

(
Ã(x)σ3Ω̃(x′) + C̃(x)(σ1 − iσ2)Ω̃(x′) B̃(x)σ3Ω̃(x′) + D̃(x)(σ1 − iσ2)Ω̃(x′)

Ã(x)(σ1 + iσ2)Ω̃(x′) − C̃(x)σ3Ω̃(x′) B̃(x)(σ1 + iσ2)Ω̃(x′) − D̃(x)σ3Ω̃(x′)

)
,

Ω̃(x) ⊗ Ω̃(x′)η

=
1

2

(
Ã(x)Ω̃(x′)σ3 + B̃(x)Ω̃(x′)(σ1 + iσ2) Ã(x)Ω̃(x′)(σ1 − iσ2) − B̃(x)Ω̃(x′)σ3

C̃(x)Ω̃(x′)σ3 + D̃(x)Ω̃(x′)(σ1 + iσ2) C̃(x)Ω̃(x′)(σ1 − iσ2) − D̃(x)Ω̃(x′)σ3

)
,

(
Ω̃(x) ⊗ 1

)
η

(
1⊗ Ω̃(x′)

)

=
1

2

(
Ã(x)σ3Ω̃(x′) + B̃(x)(σ1 + iσ2)Ω̃(x′) Ã(x)(σ1 − iσ2)Ω̃(x′) − B̃(x)σ3Ω̃(x′)

C̃(x)σ3Ω̃(x′) + D̃(x)(σ1 + iσ2)Ω̃(x′) C̃(x)(σ1 − iσ2)Ω̃(x′) − D̃(x)σ3Ω̃(x′)

)
,

(
1⊗ Ω̃(x′)

)
η

(
Ω̃(x) ⊗ 1

)

=
1

2

(
Ã(x)Ω̃(x′)σ3 + C̃(x)Ω̃(x′)(σ1 − iσ2) B̃(x)Ω̃(x′)σ3 + D̃(x)Ω̃(x′)(σ1 − iσ2)

Ã(x)Ω̃(x′)(σ1 + iσ2) − C̃(x)Ω̃(x′)σ3 B̃(x)Ω̃(x′)(σ1 + iσ2) − D̃(x)Ω̃(x′)σ3

)
.
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We can read off from this and equation (B.1) the Poisson brackets between various com-

ponents of Ω̃(x), but we are particular interested in the Ã(x) and B̃(x) components which

are given by
{
Ã(x), Ã(x′)

}
=

{
Ω̃11(x), Ω̃11(x

′)
}

=
{

Ω̃(x)⊗, Ω̃(x′)
}

11,11

=
(
B̃(x)C̃(x′) − B̃(x′)C̃(x)

)
ŝ(x, x′),

where ŝ(x, x′) = − 2π√
λ

x+x′

(1−x2)(1−x′2)
is s(x, x′) without the matrix factor η, as well as

{
Ã(x), B̃(x′)

}
=

{
Ω̃11(x), Ω̃12(x

′)
}

=
{

Ω̃(x)⊗, Ω̃(x′)
}

11,12

=
(
Ã(x)B̃(x′) + Ã(x′)B̃(x)

)
r̂(x, x′) +

(
Ã(x)B̃(x′) + D̃(x′)B̃(x)

)
ŝ(x, x′),

where r̂(x, x′) is r(x, x′) without the matrix factor η, and lastly
{
B̃(x), B̃(x′)

}
=

{
Ω̃12(x), Ω̃12(x

′)
}

=
{

Ω̃(x)⊗, Ω̃(x′)
}

12,12
= 0.

D. Dirac brackets of the action-angle variables

In order to isolate the action-angle variables, i.e. the physical degrees of freedom of the

string, we imposed the Virasoro constraints and static gauge fixing condition on the recon-

structed current. However, these constraints together form a set of second class constraints.

Therefore the algebra of the action-angle variables should be expressed in terms of Dirac

brackets instead of Poisson brackets. In this appendix we show that the Dirac brackets of

the action-angle variables are (weakly10) equal to their Poisson brackets.

We start with the worldsheet action for a string on R × S3 in conformal gauge. It is

possible to work in conformal gauge right from the outset since the worldsheet metric and

its conjugate momentum form a pair of second class constraints that commutes with the

Virasoro constraints. The S3 and R parts of the action decouple with the equations of

motion for the R part being

d ∗ dX0 = 0.

In conformal gauge this reads ∂+∂−X0 = 0 which admits the general solution

X0(σ, τ) = X+
0 (σ+) + X−

0 (σ−).

The equations of motion for the S3 part d ∗ j = 0, dj − j ∧ j = 0 or equivalently

∂−j+ = −∂+j− = −1

2
[j+, j−], (D.1)

can be rewritten as a zero curvature condition for a Lax connection

dJ(x) − J(x) ∧ J(x) = 0, J(x) =
j − x ∗ j

1 − x2
∈ sl(2, C). (D.2)

10In the context of constrained Hamiltonian systems, two functions on phase-space are said to be ‘weakly’

equal if they are equal on the constraint surface. Note that this concept of weakness bears no relation to

the notion of a ‘weak’ Poisson bracket introduced in section 2.4.2.
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Using this flat connection we can define an algebraic curve Σ in C
2 as a desingularisation

of the spectral curve

Γ : Γ(x, y) = det (y1− Ω(x, σ, τ)) = 0, Ω(x, σ, τ) ≡ P←−exp

∫

[c(σ,τ)]
J(x) ∈ SL(2, C).

As in section 3.1.3 the general solution is reconstructed by identifying the analytic prop-

erties of the Baker-Akhiezer vector ψ(P ), P ∈ Σ which solves the auxiliary linear system

for which (D.2) is the consistency condition

(d − J(x)) ψ = 0. (D.3)

In order to compute the Dirac brackets one must relax the Virasoro constraints and static

gauge fixing condition in the reconstruction. One then finds that ψ is uniquely determined

by

(ψ1) ≥ γ̂−1∞−, ψ1(∞+) = 1, and (ψ2) ≥ γ̂−1∞+, ψ2(∞−) = 1,

with





ψi(x
±, σ, τ) exp

(
∓ f+(σ+)

1−x

)
= O(1), as x → 1,

ψi(x
±, σ, τ) exp

(
∓ f−(σ−)

1+x

)
= O(1), as x → −1,

where f± are two arbitrary functions related to the conformal invariance of the equations of

motion (D.1). Explicit reconstruction requires the introduction of an Abelian differential

dQ of the second kind on Σ defined by its pole structure at x = ±1, namely

dQ(x±) ∼
x→+1

±f+(σ+)
dx

(1 − x)2
, dQ(x±) ∼

x→−1
±f−(σ−)

dx

(1 + x)2
.

We can write dQ = f+(σ+)dp+ + f−(σ−)dp− where dp± are Abelian differentials of the

second kind defined by their respective poles at x = ±1,

dp+(x±) ∼
x→+1

± dx

(1 − x)2
, dp−(x±) ∼

x→−1
± dx

(1 + x)2
, dp± ∼

x→∓1
O

(
(1 ± x)0

)
.

Just as in the flat space case, here the general solution to the equations of motion is

a function of σ±, through the differential dQ = f+(σ+)dp+ + f−(σ−)dp−, which is what

we expect since the equations of motion for the current j are conformally invariant, being

derived from a conformally invariant action. So we have the following general solution for

the sting moving on R × S3 in conformal gauge

Xsol
0 (σ, τ) = X+

0 (σ+) + X−
0 (σ−) ∈ R, jsol(σ, τ) = j

(
f+(σ+), f−(σ−)

)
∈ SU(2), (D.4)

where X±
0 , f± are arbitrary functions. We note here that the effect of the Virasoro con-

straint is to relate these arbitrary functions, precisely we have

1

2
trj2

± + (∂±X0)
2 = 0 ⇔ f±(σ±) = X±

0 (σ±).

The effect of the static gauge fixing condition on the other hand is to fix completely the

arbitrariness of the functions X±
0 , namely

X0 = κτ ⇔ X±
0 (σ±) =

κ

2
σ±.
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We make use of the general solutions (D.4) to parameterise the phase space variables as

follows

(X0(σ),Π0(σ), j±(σ)) =
(
Xsol

0 (σ, 0), ∂τ Xsol
0 (σ, 0), jsol

± (σ, 0)
)

.

We now need to impose the Virasoro constraints on phase-space

T±± ≡ 1

2
trj2

± +

(
2π√

λ
Π0 ∓ ∂σX0

)2

≈ 0, (D.5a)

as well as get rid of the residual gauge (i.e. conformal) invariance by imposing a further

gauge fixing condition, which we choose to be the static gauge11

X0 ≈ − p0√
λ

τ, Π0 ≈ p0

2π
, (D.5b)

where p0 is the zero mode of Π0. One can show that
{

1

2
trj2

±(σ),
1

2
trj2

±(σ′)

}
= ± 8π√

λ

[
1

2
trj2

±(σ) +
1

2
trj2

±(σ′)

]
δ′(σ − σ′). (D.6)

and likewise ( 2π√
λ
Π0 ∓ ∂σX0)

2 satisfies the same equation, so that the Virasoro constraints

T±± by themselves are first class. However, the static gauge constraints fail to commute

with these and among themselves (since {Π0(σ),X0(σ
′)} = δ(σ − σ′) 6≈ 0), and so the

constraints in (D.5) are second class. In terms of modes, the constraints (D.5) read

αn ≈ α̃n ≈ 0, x0 +
p0√
λ

τ ≈ 0, Ln ≈ L̃n ≈ 0, L0 ≈ L̃0 ≈ − p2
0

4
√

λ
, n 6= 0,

where Ln, L̃n are the fourier modes of 1
2 trj2

± respectively,

Ln =

√
λ

8π

∫ 2π

0
dσeinσ 1

2
trj2

+(σ), L̃n =

√
λ

8π

∫ 2π

0
dσe−inσ 1

2
trj2

−(σ), (D.7)

satisfying the following algebra,

{Lm, Ln} = i(n − m)Lm+n,

{Lm, L̃n} = 0,

{L̃m, L̃n} = i(n − m)L̃m+n,

which follows from (D.6), and αn, α̃n are the modes of X0 and Π0 defined by

αn =
λ

1

4√
2π

∫ 2π

0
dσe−inσ 1

2

(
− 2π√

λ
Π0(σ) − ∂σX0(σ)

)
, n 6= 0

α̃n =
λ

1

4√
2π

∫ 2π

0
dσeinσ 1

2

(
− 2π√

λ
Π0(σ) + ∂σX0(σ)

)
, n 6= 0

x0 =

∫ 2π

0
dσX0(σ), p0 =

∫ 2π

0
dσΠ0(σ),

(D.8)

11One can use the residual gauge freedom σ± → σ̃± = h±(σ±) to set τ̃ ∝ X0 since τ̃ =
1

2

`

h+(σ+) + h−(σ−)
´

solves the equations of motion for X0. The coefficient of proportionality is forced on

us by conformal invariance of the quantity p0 =
R

2π

0
dσΠ0(σ, τ ) = −

√
λ

2π

R

2π

0
dσẊ0(σ, τ ), so that X0 = − p0√

λ
τ̃ .
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satisfying the following algebra,

{αm, αn} = imδm+n, {αm, α̃n} = 0,

{α̃m, α̃n} = imδm+n, {p0, x0} = 1.

For the closed string, static gauge does not completely fix the residual gauge invariance

as there still remains the possibility of rigid translations σ → σ + b, which is generated by

L0 − L̃0. This rigid transformation can be dealt with by symplectic reduction as explained

in [1], which consists in imposing the constraint that the total worldsheet momentum van-

ishes P ∝ L0 − L̃0 ∝ −∑K
I=1 nISI = 0 as well as identifying points related by translations

in σ. So setting aside this rigid transformation, the set of relevant constraints thus reads

αn ≈ α̃n ≈ 0, x0 +
p0√
λ

τ ≈ 0, Ln ≈ L̃n ≈ 0, L0 + L̃0 +
p2
0

2
√

λ
≈ 0, n 6= 0. (D.9)

In order to fix these constraints one must replace the Poisson bracket by the Dirac bracket

for this set of second class constraints. The question now is whether the Dirac bracket for

the action angle variables are the same as their Poisson brackets.

Now for functions f, g of the principal chiral fields j (which are independent of X0,Π0

and therefore commute with the constraints αn, α̃n, x0 + p0τ/
√

λ) the Dirac bracket takes

the schematic form

{f, g}D = {f, g}+{f, Ln}Anm{Lm, g}+{f, L0+L̃0}Bm{Lm, g}+{f, Lm}Cm{L0+L̃0, g}
+{f, L̃n}Ãnm{L̃m, g}+{f, L0+L̃0}B̃m{L̃m, g}+{f, L̃m}C̃m{L0+L̃0, g}.

Note that there is no term of the form “{f, L0 + L̃0}D{L0 + L̃0, g}” because the corre-

sponding component D in the inverse matrix C−1
ab = {φa, φb}−1 of the Poisson bracket of

constraints vanishes. This property boils down to the fact that the constraint x0 +p0τ/
√

λ

commutes with every constraint in (D.9) including itself but only fails to commute with

the constraint L0 + L̃0 + p2
0/(2

√
λ),

Cab = {φa, φb} =




0 ∗ ∗ 0 0 ∗
∗ ∗ 0 0 0 0

∗ 0 ∗ 0 0 0

0 0 0 ∗ 0 0

0 0 0 0 ∗ 0

∗ 0 0 0 0 0




L0 + L̃0 + p2
0/(2

√
λ)

Ln

L̃n

αn

α̃n

x0 + p0τ/
√

λ

.

It follows that for functions f, g of the principal chiral model that are invariant under

residual gauge transformations generated by Ln, L̃n, n 6= 0 we have the desired equality of

Dirac and Poisson brackets

{f, g}D = {f, g}.

It therefore remains to check that the action angle variables can be defined in a conformally

invariant way from the general solution jsol(σ, τ) obtained in (D.4).
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Going back to expression (D.4) we see that the periodicity requirement of the solution

under σ → σ + 2π leads to the conditions

[f±(σ + 2π) − f±(σ)]

∫

b

dp± ∈ 2πZ
g + 2πΠZ

g.

Since the Jacobian lattice 2πZ
g + 2πΠZ

g is discrete, this in turn requires the expression

in square brackets to be constant, i.e. independent of σ, say f±(σ + 2π) − f±(σ) = 2πk±,

k± ∈ C. Then f±(σ) − k±σ is periodic under σ → σ + 2π, which means that we can

decompose the functions f± as follows

f±(σ) = ξ±0 + k±σ +
∑

n 6=0

ξ±n einσ. (D.10)

Recall that imposing the Virasoro constraint on the solution jsol(σ, τ) has the effect of

rendering the functions f± linear, and so this corresponds to setting all the modes ξ±n
in (D.10) to zero, i.e.

1

2
tr

(
jsol
±

)2
= −p2

0

λ
⇔ ξ±n = 0, ∀n, k± =

ip0

2
√

λ
. (D.11)

As we now show, the effect of the Virasoro constraints on the functions f± can be

deduced from the following brackets

{√
λ

4π

1

2
trj2

±(σ), jb
±(σ′)

}
=

1

2
[j±(σ), j∓(σ)]b δ(σ − σ′) ± 2jb

±(σ)δ′(σ − σ′),

{√
λ

4π

1

2
trj2

±(σ), jb
∓(σ′)

}
= −1

2
[j±(σ), j∓(σ)]b δ(σ − σ′),

which are a consequence of the non-ultra local brackets of the principal chiral model. Let

jsol(σ, τ) be a physical path, i.e. satisfying the equations of motion (D.1), then one can

deduce immediately from the above brackets that

{√
λ

4π

∫
ε±(σ′ ± τ)

1

2
trj2

±(σ′)dσ′, jb
±(σ)

} (
jsol(σ, τ)

)
= −∂±

(
ε±(σ ± τ)jsol

± (σ, τ)
)b

,

{√
λ

4π

∫
ε±(σ′ ± τ)

1

2
trj2

±(σ′)dσ′, jb
∓(σ)

} (
jsol(σ, τ)

)
= −ε±(σ ± τ)

(
∂±jsol

∓ (σ, τ)
)b

.

So jb
± transforms as a scalar under 1

2trj2
∓ but as a scalar density of weight 1 under 1

2 trj2
±

(this is in agreement with the fact that the Langrangian L ∝ tr(j+j−) should be a density

of weight 1 under coordinate transformations). Because jsol(σ, τ) = j(f+(σ+), f−(σ−)) one

can now derive the action of Ln, L̃n on the functions f±, namely

{Ln, f+(σ+)} = −einσ+

∂σ+f+(σ+), {Ln, f−(σ−)} = −einσ+

∂σ+f−(σ−) = 0,

{L̃n, f+(σ+)} = −e−inσ−
∂σ−f+(σ+) = 0, {L̃n, f−(σ−)} = −e−inσ−

∂σ−f−(σ−).
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Using the definition (D.10) of the functions f± we are now able to write the action of

the Virasoro constraints Ln, L̃n, n 6= 0 on the parameters ξ+
m and ξ−m. Explicitly we find

{Ln, ξ−m} = 0, {Ln, ξ+
m} = δmnk+ − (m − n)ξ+

m−n,

{L̃n, ξ+
m} = 0, {L̃n, ξ−m} = δmnk− − (m − n)ξ−m−n.

In particular, on the constraint surface (D.11) we get

{Ln, ξ+
m} ≈ δmnk+, {L̃n, ξ−m} ≈ δmnk−, n 6= 0. (D.12)

Recalling how the σ, τ evolution of the solution is expressed in terms of the Abelian

differential of the second kind dQ = f+(σ+)dp+ + f−(σ−)dp− as

θ(σ, τ) = θ0 −
∫

b

dQ = θ0 − f+(σ+)

∫

b

dp+ − f−(σ−)

∫

b

dp−,

θ̄(σ, τ) = θ̄0 −
∫ ∞+

∞−
dQ = θ̄0 − f+(σ+)

∫ ∞+

∞−
dp+ − f−(σ−)

∫ ∞+

∞−
dp−,

the angle variables were defined in [1] and in section 3.4 simply as the parameters

θ(0, 0), θ̄(0, 0). A more suitable definition here, valid off the constraint surface, would be in-

stead to take the angle variable ϕI , I = 1, . . . ,K = g+1 as the zero mode of θi(σ, 0), θ̄(σ, 0),

namely on J(Σ) × C/2πZ we define

ϕ = θ0 − ξ+
0

∫

b

dp+ − ξ−0

∫

b

dp−,

ϕK = θ̄0 − ξ+
0

∫ ∞+

∞−
dp+ − ξ−0

∫ ∞+

∞−
dp−.

(D.13)

The difference between these two definitions is the following vector in J(Σ) × C/2πZ

θ(0, 0) − ϕ = −




∑

n 6=0

ξ+
n




∫

b

dp+ −




∑

n 6=0

ξ−n




∫

b

dp− ≈ 0,

θ̄(0, 0) − ϕK = −




∑

n 6=0

ξ+
n




∫ ∞+

∞−
dp+ −




∑

n 6=0

ξ−n




∫ ∞+

∞−
dp− ≈ 0,

which vanishes on the constraint surface. In particular, on the constraint surface (D.11)

we have by (D.12) and (D.13)

{Ln, ϕI} ≈ {L̃n, ϕI} ≈ 0, I = 1, . . . ,K.

Since the action variables SI , I = 1, . . . ,K are invariant under σ, τ evolution, they obviously

Poisson commute with the generators of conformal transformation Ln, L̃n and so we also

have

{Ln, SI} = {L̃n, SI} = 0, I = 1, . . . ,K.

So finally we have established equality of the Dirac and Poisson bracket of the action

angle variables on the constraint surface,

{f, g}D ≈ {f, g}, for f, g ∈ {ϕI , SI}K
I=1.
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